pythonscikit-learnlabel-encoding

How to get true labels from LabelEncoder


I have the below code snippet:

df = pd.read_csv("data.csv")

X = df.drop(['label'], axis=1)
Y= df['label']

le = LabelEncoder()
Y = le.fit_transform(Y)
mapping = dict(zip(le.classes_, range(len(le.classes_))))

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=7,stratify=Y)

##xgb model
model = XGBClassifier()
model.fit(x_train, y_train)

#predict
y_pred = model.predict(x_train)

Here the y_pred gives encoded labels. How can I get the true labels before encoding?


Solution

  • You can use

    le.inverse_transform(y_pred)
    

    where le is the fitted LabelEncoder

    le = LabelEncoder().fit(y)
    

    See the documentation.

    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder
    from xgboost import XGBClassifier
    
    x = np.random.normal(0, 1, (20, 2))
    y = np.array(['a', 'b'] * 10)
    print(y)
    # ['a' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'a' 'b']
    
    le = LabelEncoder().fit(y)
    y_enc = le.transform(y)
    print(y_enc)
    # [0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]
    
    x_train, x_test, y_train, y_test = train_test_split(x, y_enc, test_size=0.33, random_state=7, stratify=y_enc)
    
    model = XGBClassifier()
    model.fit(x_train, y_train)
    
    y_pred_enc = model.predict(x_train)
    print(y_pred_enc)
    # [1 0 0 0 0 0 0 0 1 1 1 0 1]
    
    y_pred = le.inverse_transform(y_pred_enc)
    print(y_pred)
    # ['b' 'a' 'a' 'a' 'a' 'a' 'a' 'a' 'b' 'b' 'b' 'a' 'b']