This is my original df and fitted model
library(tsibble)
library(tibble)
library(ISOweek)
library(fable)
library(forecast)
library(fpp3)
library(dplyr)
library(tidyverse)
Original.df <- structure(list(YearWeek = c("201901", "201902", "201903", "201904",
"201905", "201906", "201907", "201908", "201909", "201910", "201911",
"201912", "201913", "201914", "201915", "201916", "201917", "201918",
"201919", "201920", "201921", "201922", "201923", "201924", "201925",
"201926", "201927", "201928", "201929", "201930", "201931", "201932",
"201933", "201934", "201935", "201936", "201937", "201938", "201939",
"201940", "201941", "201942", "201943", "201944", "201945", "201946",
"201947", "201948", "201949", "201950", "201951", "201952", "202001",
"202002", "202003", "202004", "202005", "202006", "202007", "202008",
"202009", "202010", "202011", "202012", "202013", "202014", "202015",
"202016", "202017", "202018", "202019", "202020", "202021", "202022",
"202023", "202024", "202025", "202026", "202027", "202028", "202029",
"202030", "202031", "202032", "202033", "202034", "202035", "202036",
"202037", "202038", "202039", "202040", "202041", "202042", "202043",
"202044", "202045", "202046", "202047", "202048", "202049", "202050",
"202051", "202052", "202053", "202101", "202102", "202103", "202104",
"202105", "202106", "202107", "202108", "202109", "202110", "202111",
"202112", "202113", "202114", "202115", "202116", "202117", "202118",
"202119", "202120", "202121", "202122", "202123", "202124", "202125",
"202126", "202127", "202128", "202129", "202130", "202131", "202132",
"202133", "202134", "202135", "202136", "202137", "202138", "202139",
"202140", "202141", "202142", "202143"), Shipment = c(418, 1442,
1115, 1203, 1192, 1353, 1191, 1411, 933, 1384, 1362, 1353, 1739,
1751, 1595, 1380, 1711, 2058, 1843, 1602, 2195, 2159, 2009, 1812,
2195, 1763, 821, 1892, 1781, 2071, 1789, 1789, 1732, 1384, 1435,
1247, 1839, 2034, 1963, 1599, 1596, 1548, 1084, 1350, 1856, 1882,
1979, 1021, 1311, 2031, 1547, 591, 724, 1535, 1268, 1021, 1269,
1763, 1275, 1411, 1847, 1379, 1606, 1473, 1180, 926, 800, 840,
1375, 1755, 1902, 1921, 1743, 1275, 1425, 1088, 1416, 1168, 842,
1185, 1570, 1435, 1209, 1470, 1368, 1926, 1233, 1189, 1245, 1465,
1226, 887, 1489, 1369, 1358, 1179, 1200, 1226, 1066, 823, 1913,
2308, 1842, 910, 794, 1098, 1557, 1417, 1851, 1876, 1010, 160,
1803, 1607, 1185, 1347, 1700, 981, 1191, 1058, 1464, 1513, 1333,
1169, 1294, 978, 962, 1254, 987, 1290, 758, 436, 579, 636, 614,
906, 982, 649, 564, 502, 274, 473, 506, 902, 639, 810, 398, 488
), Production = c(0, 198, 1436, 1055, 1396, 1330, 1460, 1628,
1513, 1673, 1737, 1274, 1726, 1591, 2094, 1411, 2009, 1909, 1759,
1693, 1748, 1455, 2078, 1717, 1737, 1886, 862, 1382, 1779, 1423,
1460, 1454, 1347, 1409, 1203, 1235, 1397, 1563, 1411, 1455, 1706,
688, 1446, 1336, 1618, 1404, 1759, 746, 1560, 1665, 1317, 0,
441, 1390, 1392, 1180, 1477, 1265, 1485, 1495, 1543, 1584, 1575,
1609, 1233, 1420, 908, 1008, 1586, 1392, 1385, 1259, 1010, 973,
1053, 905, 1101, 1196, 891, 1033, 925, 889, 1136, 1058, 1179,
1047, 967, 900, 904, 986, 1014, 945, 1030, 1066, 1191, 1143,
1292, 574, 1174, 515, 1296, 1315, 1241, 0, 0, 1182, 1052, 1107,
1207, 1254, 1055, 258, 1471, 1344, 1353, 1265, 1444, 791, 1397,
1186, 1264, 1032, 949, 1059, 954, 798, 956, 1074, 1136, 1209,
975, 833, 994, 1127, 1153, 1202, 1234, 1336, 1484, 1515, 1151,
1175, 976, 1135, 1272, 869, 1900, 1173), Net.Production.Qty = c(22,
188, 1428, 1031, 1382, 1368, 1456, 1578, 1463, 1583, 1699, 1318,
1582, 1537, 2118, 1567, 1961, 1897, 1767, 1603, 1666, 1419, 2186,
1621, 1677, 1840, 698, 1290, 1411, 927, 1754, 1222, 1411, 1549,
1491, 1359, 1179, 1945, 1463, 1465, 1764, 764, 810, 1308, 1830,
1542, 1695, 544, 1482, 1673, 1659, 0, 445, 1358, 1364, 1224,
1417, 1239, 1387, 1595, 1469, 1624, 1643, 1763, 1217, 1456, 568,
1290, 1666, 1428, 1327, 773, 1118, 1231, 1143, 921, 1083, 1124,
935, 903, 937, 849, 1132, 1032, 1143, 1081, 891, 886, 880, 1002,
1072, 969, 1000, 996, 1243, 1183, 1306, 650, 1226, 553, 1306,
1379, 1359, 0, 0, 1182, 988, 1099, 1173, 1244, 1039, 254, 1425,
1318, 1385, 1221, 1364, 739, 1397, 1112, 1160, 924, 971, 1015,
978, 828, 868, 994, 1090, 1165, 783, 887, 934, 1023, 1045, 1114,
1052, 1186, 1456, 1401, 1249, 779, 430, 1625, 1498, 883, 1860,
1101), isoweek = c("2019-W01-1", "2019-W02-1", "2019-W03-1",
"2019-W04-1", "2019-W05-1", "2019-W06-1", "2019-W07-1", "2019-W08-1",
"2019-W09-1", "2019-W10-1", "2019-W11-1", "2019-W12-1", "2019-W13-1",
"2019-W14-1", "2019-W15-1", "2019-W16-1", "2019-W17-1", "2019-W18-1",
"2019-W19-1", "2019-W20-1", "2019-W21-1", "2019-W22-1", "2019-W23-1",
"2019-W24-1", "2019-W25-1", "2019-W26-1", "2019-W27-1", "2019-W28-1",
"2019-W29-1", "2019-W30-1", "2019-W31-1", "2019-W32-1", "2019-W33-1",
"2019-W34-1", "2019-W35-1", "2019-W36-1", "2019-W37-1", "2019-W38-1",
"2019-W39-1", "2019-W40-1", "2019-W41-1", "2019-W42-1", "2019-W43-1",
"2019-W44-1", "2019-W45-1", "2019-W46-1", "2019-W47-1", "2019-W48-1",
"2019-W49-1", "2019-W50-1", "2019-W51-1", "2019-W52-1", "2020-W01-1",
"2020-W02-1", "2020-W03-1", "2020-W04-1", "2020-W05-1", "2020-W06-1",
"2020-W07-1", "2020-W08-1", "2020-W09-1", "2020-W10-1", "2020-W11-1",
"2020-W12-1", "2020-W13-1", "2020-W14-1", "2020-W15-1", "2020-W16-1",
"2020-W17-1", "2020-W18-1", "2020-W19-1", "2020-W20-1", "2020-W21-1",
"2020-W22-1", "2020-W23-1", "2020-W24-1", "2020-W25-1", "2020-W26-1",
"2020-W27-1", "2020-W28-1", "2020-W29-1", "2020-W30-1", "2020-W31-1",
"2020-W32-1", "2020-W33-1", "2020-W34-1", "2020-W35-1", "2020-W36-1",
"2020-W37-1", "2020-W38-1", "2020-W39-1", "2020-W40-1", "2020-W41-1",
"2020-W42-1", "2020-W43-1", "2020-W44-1", "2020-W45-1", "2020-W46-1",
"2020-W47-1", "2020-W48-1", "2020-W49-1", "2020-W50-1", "2020-W51-1",
"2020-W52-1", "2020-W53-1", "2021-W01-1", "2021-W02-1", "2021-W03-1",
"2021-W04-1", "2021-W05-1", "2021-W06-1", "2021-W07-1", "2021-W08-1",
"2021-W09-1", "2021-W10-1", "2021-W11-1", "2021-W12-1", "2021-W13-1",
"2021-W14-1", "2021-W15-1", "2021-W16-1", "2021-W17-1", "2021-W18-1",
"2021-W19-1", "2021-W20-1", "2021-W21-1", "2021-W22-1", "2021-W23-1",
"2021-W24-1", "2021-W25-1", "2021-W26-1", "2021-W27-1", "2021-W28-1",
"2021-W29-1", "2021-W30-1", "2021-W31-1", "2021-W32-1", "2021-W33-1",
"2021-W34-1", "2021-W35-1", "2021-W36-1", "2021-W37-1", "2021-W38-1",
"2021-W39-1", "2021-W40-1", "2021-W41-1", "2021-W42-1", "2021-W43-1"
), date = structure(c(17896, 17903, 17910, 17917, 17924, 17931,
17938, 17945, 17952, 17959, 17966, 17973, 17980, 17987, 17994,
18001, 18008, 18015, 18022, 18029, 18036, 18043, 18050, 18057,
18064, 18071, 18078, 18085, 18092, 18099, 18106, 18113, 18120,
18127, 18134, 18141, 18148, 18155, 18162, 18169, 18176, 18183,
18190, 18197, 18204, 18211, 18218, 18225, 18232, 18239, 18246,
18253, 18260, 18267, 18274, 18281, 18288, 18295, 18302, 18309,
18316, 18323, 18330, 18337, 18344, 18351, 18358, 18365, 18372,
18379, 18386, 18393, 18400, 18407, 18414, 18421, 18428, 18435,
18442, 18449, 18456, 18463, 18470, 18477, 18484, 18491, 18498,
18505, 18512, 18519, 18526, 18533, 18540, 18547, 18554, 18561,
18568, 18575, 18582, 18589, 18596, 18603, 18610, 18617, 18624,
18631, 18638, 18645, 18652, 18659, 18666, 18673, 18680, 18687,
18694, 18701, 18708, 18715, 18722, 18729, 18736, 18743, 18750,
18757, 18764, 18771, 18778, 18785, 18792, 18799, 18806, 18813,
18820, 18827, 18834, 18841, 18848, 18855, 18862, 18869, 18876,
18883, 18890, 18897, 18904, 18911, 18918, 18925), class = "Date")), row.names = c(NA,
148L), class = "data.frame")
# Converting the df to accomodate leap year for weekly observations
Original.df <- Original.df %>%
mutate(
isoweek =stringr::str_replace(YearWeek, "^(\\d{4})(\\d{2})$", "\\1-W\\2-1"),
date = ISOweek::ISOweek2date(isoweek)
)
# creating test and train data
Original.train.df <- Original.df %>%
filter(date >= "2018-12-31", date <= "2021-03-29")
Original.test.df <- Original.df %>%
filter(date >= "2021-04-05", date <= "2021-10-25")
# splitting the original train data to contain only Week, Dependent and Independent variables
Total.train.df<-Original.train.df %>%
mutate(Week.1 = yearweek(ISOweek::ISOweek(date))) %>%
select(-YearWeek, -Production, -date,-isoweek) %>%
as_tsibble(index = Week.1)
#Fitting forecast model(Arima with Fourier terms) to Net.Production.qty
fit_all_models.Prod.1 <- list()
for(K in seq(25)){
fit.Prod.1 <- Total.train.df %>%
model(ARIMA(Net.Production.Qty ~ fourier(K = K),stepwise = FALSE, approximation = FALSE))
names(fit.Prod.1) <- paste0("arima_", K)
fit_all_models.Prod.1 <- bind_cols(fit_all_models.Prod.1, fit.Prod.1)
}
glance(fit_all_models.Prod.1) %>% arrange(AICc) %>% select(.model:BIC)
best_model.Prod.1 <- glance(fit_all_models.Prod.1) %>%
filter(AICc == min(AICc)) %>%
select(.model) %>%
as.character
#Forecasting Net.Production.Qty for 30 steps using the fitted model above-Model.1
Forecast.Net.Prod.1<-fit_all_models.Prod.1 %>%
select(all_of(best_model.Prod.1)) %>%
forecast(h = 30)
#To extract fitted values from the model which has min AICc
fitted.Prod.1<-fit.Prod.1 %>%
filter(AICc == min(AICc)) %>% fitted()
As you see from the last step above I'm trying to extract the fitted values from the model which has minimum AICc- which is not working though
If anyone could help me getting the fitted values from the model above which has min.AICc would be really helpful
Thank you
You are almost there:
# your code .....
# get the fitted based on the selection in best_model.Prod.1
fitted.Prod.1 <- fit_all_models.Prod.1 %>%
select(all_of(best_model.Prod.1)) %>%
fitted()
fitted.Prod.1
# A tsibble: 118 x 3 [1W]
# Key: .model [1]
.model Week.1 .fitted
<chr> <week> <dbl>
1 arima_13 2019 W01 21.0
2 arima_13 2019 W02 486.
3 arima_13 2019 W03 1007.
4 arima_13 2019 W04 965.
5 arima_13 2019 W05 1012.
6 arima_13 2019 W06 1088.
7 arima_13 2019 W07 1175.
8 arima_13 2019 W08 1166.
9 arima_13 2019 W09 1305.
10 arima_13 2019 W10 1613.
# ... with 108 more rows