I have a problem with training using tff.simulation.FilePerUserClientData
- I am quickly running out of RAM after 5-6 rounds with 10 clients per round.
The RAM usage is steadily increasing with each round.
I tried to narrow it down and realized that the issue is not the actual iterative process but the creation of the client datasets.
Simply calling create_tf_dataset_for_client(client)
in a loop causes the problem.
So this is a minimal version of my code:
import tensorflow as tf
import tensorflow_federated as tff
import numpy as np
import pickle
BATCH_SIZE = 16
EPOCHS = 2
MAX_SEQUENCE_LEN = 20
NUM_ROUNDS = 100
CLIENTS_PER_ROUND = 10
def decode_fn(record_bytes):
return tf.io.parse_single_example(
record_bytes,
{"x": tf.io.FixedLenFeature([MAX_SEQUENCE_LEN], dtype=tf.string),
"y": tf.io.FixedLenFeature([MAX_SEQUENCE_LEN], dtype=tf.string)}
)
def dataset_fn(path):
return tf.data.TFRecordDataset([path]).map(decode_fn).padded_batch(BATCH_SIZE).repeat(EPOCHS)
def sample_client_data(data, client_ids, sampling_prob):
clients_total = len(client_ids)
x = np.random.uniform(size=clients_total)
sampled_ids = [client_ids[i] for i in range(clients_total) if x[i] < sampling_prob]
data = [train_data.create_tf_dataset_for_client(client) for client in sampled_ids]
return data
with open('users.pkl', 'rb') as f:
users = pickle.load(f)
train_client_ids = users["train"]
client_id_to_train_file = {i: "reddit_leaf_tf/" + i for i in train_client_ids}
train_data = tff.simulation.datasets.FilePerUserClientData(
client_ids_to_files=client_id_to_train_file,
dataset_fn=dataset_fn
)
sampling_prob = CLIENTS_PER_ROUND / len(train_client_ids)
for round_num in range(0, NUM_ROUNDS):
print('Round {r}'.format(r=round_num))
participants_data = sample_client_data(train_data, train_client_ids, sampling_prob)
print("Round Completed")
I am using tensorflow-federated 19.0.
Is there something wrong with the way I create the client datasets or is it somehow expected that the RAM from the previous round is not freed?
schmana@ noticed this occurs when changing the cardinality of the CLIENTS
placement (different number of client datasets) each round. This results in a cache filing up as documented in http://github.com/tensorflow/federated/issues/1215.
A workaround in the immediate term would be to call:
tff.framework.get_context_stack().current.executor_factory.clean_up_executors()
At the start or end of every round.