My data set df
looks as follows:
Date Value
...
2012-07-31 61.9443
2012-07-30 62.1551
2012-07-27 62.3328
... ...
2011-10-04 48.3923
2011-10-03 48.5939
2011-09-30 50.0327
2011-09-29 51.8350
2011-09-28 50.5555
2011-09-27 51.8470
2011-09-26 49.6350
... ...
2011-08-03 61.3948
2011-08-02 61.5476
2011-08-01 64.1407
2011-07-29 65.0364
2011-07-28 65.7065
2011-07-27 66.3463
2011-07-26 67.1508
2011-07-25 67.5577
... ...
2010-10-05 57.3674
2010-10-04 56.3687
2010-10-01 57.6022
2010-09-30 58.0993
2010-09-29 57.9934
Below are the data type of the two columns:
Type Column Name Example Value
-----------------------------------------------------------------
datetime64[ns] Date 2020-06-19 00:00:00
float64 Value 108.82
I would like to have a subset of df
that contains only the rows where the first entry in October and the last entry of July are selected:
Date Value
...
2012-07-31 61.9443
2011-10-03 48.5939
2011-07-29 65.0364
2010-10-01 57.6022
Any idea how to do that?
An elegant solution without group just by using index from sorted dataframe:
# Sort you data by Date and convert date string to datetime
df['Date']=pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
# For selecting first row just subset by index where month is 7 and select first index i.e. 0
jul = df.loc[[df.index[df['Date'].dt.month == 7].tolist()[0]]]
# For sleecting last row just subset by index where months is 10 and select last index i.e -1
oct = df.loc[[df.index[df['Date'].dt.month == 10].tolist()[-1]]]
#Finally concatenate both
pd.concat([jul,oct]).reset_index(drop=True)