pysparkdataproc

Connect PySpark session to DataProc


I'm trying to connect a PySpark session running locally to a DataProc cluster. I want to be able to work with files on gcs without downloading them. My goal is to perform ad-hoc analyses using local Spark, then switch to a larger cluster when I'm ready to scale. I realize that DataProc runs Spark on Yarn, and I've copied over the yarn-site.xml locally. I've also opened up an ssh tunnel from my local machine to the DataProc master node and set up port forwarding for the ports identified in the yarn xml. It doesn't seem to be working though, when I try to create a session in a Jupyter notebook it hangs indefinitely. Nothing in stdout or DataProc logs that I can see. Has anyone had success with this?


Solution

  • For anyone interested, I eventually abandoned this approach. I'm instead running Jupyter Enterprise Gateway on the master node, setting up port forwarding, and then launching my notebooks locally to connect to kernel(s) running on the server. It works very nicely so far.