pythongraphtreeanytree

Finding a closed path from list of start and end nodes


I have a list of edges (E) of a graph with nodes V = [1,2,3,4,5,6]:

E = [(1,2), (1,5), (2,3), (3,1), (5,6), (6,1)]

where each tuple (a,b) refers to the start & end node of the edge respectively.

If I know the edges form a closed path in graph G, can I recover the path?

Note that E is not the set of all edges of the graph. Its just a set of edges.

In this example, the path would be 1->2->3->1->5->6->1

A naive approach, I can think of is using a tree where I start with a node, say 1, then I look at all tuples that start with 1, here, (1,2) and (1,5). Then I have two branches, and with nodes as 2 & 5, I continue the process till I end at the starting node at a branch.

How to code this efficiently in python?


Solution

  • The networkx package has a function that can generate the desired circuit for you in linear time...

    It is possible, that construction of nx.MultiDiGraph() is slower and not such efficient, as desired in question, or usage of external packages for only one function is rather excessive. If it is so, there is another way.

    Plan: firstly we will find some way from start_node to start_node, then we will insert all loops, that were not visited yet.

    from itertools import chain
    from collections import defaultdict, deque
    from typing import Tuple, List, Iterable, Iterator, DefaultDict, Deque
    
    
    def retrieve_closed_path(arcs: List[Tuple[int, int]], start_node: int = 1) -> Iterator[int]:
        if not arcs:
            return iter([])
    
        # for each node `u` carries queue of its
        # neighbours to be visited from node `u`
        d: DefaultDict[int, Deque[int]] = defaultdict(deque)
        for u, v in arcs:
            # deque pop and append complexity is O(1)
            d[u].append(v)
    
        def _dfs(node) -> Iterator[int]:
            out: Iterator[int] = iter([])
            # guarantee, that all queues
            # will be emptied at the end
            while d[node]:
                # chain returns an iterator and helps to
                # avoid unnecessary memory reallocations
                out = chain([node], _dfs(d[node].pop()), out)
                # if we return in this loop from recursive call, then
                # `out` already carries some (node, ...) and we need
                # only to insert all other loops which start at `node`
            return out
    
        return chain(_dfs(start_node), [start_node])
    
    
    def path_to_string(path: Iterable[int]) -> str:
        return '->'.join(str(x) for x in path)
    
    

    Examples:

        E = [(1, 2), (2, 1)]
        p = retrieve_closed_path(E, 1)
        print(path_to_string(p))
        >> 1->2->1
    
        E = [(1, 2), (1, 5), (2, 3), (3, 1), (5, 6), (6, 1)]
        p = retrieve_closed_path(E, 1)
        print(path_to_string(p))
    
        >> 1->5->6->1->2->3->1
    
        E = [(1, 2), (2, 3), (3, 4), (4, 2), (2, 1)]
        p = retrieve_closed_path(E, 1)
        print(path_to_string(p))
    
        >> 1->2->3->4->2->1
    
    
        E = [(5, 1), (1, 5), (5, 2), (2, 5), (5, 1), (1, 4), (4, 5)]
        p = retrieve_closed_path(E, 1)
        print(path_to_string())
        >> 1->4->5->1->5->2->5->1