According to (steward,1998). A matrix A which is invertible can be approximated by the formula A^{-1} = \sum^{inf}_{n=0} (I- A)^{n}
I tried implementing an algorithm to approximate a simple matrix's inverse, the loss function showed funny results. please look at the code below. more info about the Neumann series can be found here and here
here is my code.
A = np.array([[1,0,2],[3,1,-2],[-5,-1,9]])
class Neumann_inversion():
def __init__(self,A,rank):
self.A = A
self.rank = rank
self.eye = np.eye(len(A))
self.loss = []
self.loss2 =[]
self.A_hat = np.zeros((3,3),dtype = float)
#self.loss.append(np.linalg.norm(np.linalg.inv(self.A)-self.A_hat))
def approximate(self):
# self.A_hat = None
n = 0
L = (self.eye-self.A)
while n < self.rank:
self.A_hat += np.linalg.matrix_power(L,n)
loss = np.linalg.norm(np.linalg.inv(self.A) - self.A_hat)
self.loss.append(loss)
n+= 1
plt.plot(self.loss)
plt.ylabel('Loss')
plt.xlabel('rank')
# ax.axis('scaled')
return
Matrix = Neumann_inversion(A,200)
Matrix.approximate()
The formula is valid only if $A^n$ tends to zero as $n$ increase. So your matrix must satisfy
np.all(np.abs(np.linalg.eigvals(A)) < 1)
Try
Neumann_inversion(A/10, 200).approximate()
and you can take the loss seriously :)
The origin of the formula has something to do with
(1-x) * (1 + x + x^2 + ... x^n) = (1 - x^(n+1))
If, and only if, all the eigenvalues of the matrix have magnitude less than 1 the term x^(n+1) will be close to zero, so the sum will be approximately the inverse of (1-x).