I am trying to build a tf.data.Dataset
pipeline that reads 16 tab separated .gzip
files which include a sentence, a useless file indicator, and a label. I'd like to apply a tokenizer to the first axis of the dataset only. Additionally, I'd love to drop the middle axis
Here is my code:
ds = tf.data.Dataset.list_files("references/reads/*.txt.gz")
ds = tf.data.TextLineDataset(filenames=ds, compression_type="GZIP", num_parallel_reads=tf.data.experimental.AUTOTUNE)
ds = ds.map(lambda x: tf.strings.split(x, "\t"), num_parallel_calls=tf.data.experimental.AUTOTUNE)
Here is the data:
>>> [print(a) for a in ds.take(2)]
tf.Tensor([b'Happy little sentence.' b'Useless Text' b'Label'], shape=(3,), dtype=string)
I'd like to apply my tokenizer to only the first axis of the tensor ('Happy little sentence.')
Bonus points if I can delete 'Useless Text'
. Here has been my unsuccessful approach:
with open('my_tokenizer.model', 'rb') as f_in:
model = f_in.read()
s = text.SentencepieceTokenizer(model=model)
ds = ds.map(lambda x: s.tokenize(x), num_parallel_calls=tf.data.experimental.AUTOTUNE)
This tokenizes everything!
Assuming you always have 3 elements (a sentence, a useless file indicator, and a label) in each tensor, you could try indexing the first and last element:
import tensorflow as tf
import tensorflow_text as tf_text
import requests
url = "https://github.com/tensorflow/text/blob/master/tensorflow_text/python/ops/test_data/test_oss_model.model?raw=true"
model = requests.get(url).content
ds = tf.data.Dataset.from_tensor_slices(([['Happy little sentence.', 'Useless Text', 'Faust'],
['Happy little sentence1.', 'Useless Text1', 'Faust1'],
['Happy little sentence2.', 'Useless Text2', 'Faust2']]))
s = tf_text.SentencepieceTokenizer(model=model)
def transform_data(x):
return s.tokenize(x[0]), x[2]
ds = ds.map(transform_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
for d in ds:
print(d)
(<tf.Tensor: shape=(11,), dtype=int32, numpy=array([ 4, 165, 19, 29, 29, 34, 544, 331, 15, 256, 6], dtype=int32)>, <tf.Tensor: shape=(), dtype=string, numpy=b'Faust'>)
(<tf.Tensor: shape=(12,), dtype=int32, numpy=
array([ 4, 165, 19, 29, 29, 34, 544, 331, 15, 256, 357, 6],
dtype=int32)>, <tf.Tensor: shape=(), dtype=string, numpy=b'Faust1'>)
(<tf.Tensor: shape=(12,), dtype=int32, numpy=
array([ 4, 165, 19, 29, 29, 34, 544, 331, 15, 256, 596, 6],
dtype=int32)>, <tf.Tensor: shape=(), dtype=string, numpy=b'Faust2'>)