I want to generate a rank 5 100x600 matrix in numpy with all the entries sampled from np.random.uniform(0, 20), so that all the entries will be uniformly distributed between [0, 20). What will be the best way to do so in python?
I see there is an SVD-inspired way to do so here (https://math.stackexchange.com/questions/3567510/how-to-generate-a-rank-r-matrix-with-entries-uniform), but I am not sure how to code it up. I am looking for a working example of this SVD-inspired way to get uniformly distributed entries.
I have actually managed to code up a rank 5 100x100 matrix by vertically stacking five 20x100 rank 1 matrices, then shuffling the vertical indices. However, the resulting 100x100 matrix does not have uniformly distributed entries [0, 20).
Here is my code (my best attempt):
import numpy as np
def randomMatrix(m, n, p, q):
# creates an m x n matrix with lower bound p and upper bound q, randomly.
count = np.random.uniform(p, q, size=(m, n))
return count
Qs = []
my_rank = 5
for i in range(my_rank):
L = randomMatrix(20, 1, 0, np.sqrt(20))
# L is tall
R = randomMatrix(1, 100, 0, np.sqrt(20))
# R is long
Q = np.outer(L, R)
Qs.append(Q)
Q = np.vstack(Qs)
#shuffle (preserves rank 5 [confirmed])
np.random.shuffle(Q)
I just couldn't take the fact the my previous solution (the "selection" method) did not really produce strictly uniformly distributed entries, but only close enough to fool a statistical test sometimes. The asymptotical case however, will almost surely not be distributed uniformly. But I did dream up another crazy idea that's just as bad, but in another manner - it's not really random.
In this solution, I do smth similar to OP's method of forming R matrices with rank 1 and then concatenating them but a little differently. I create each matrix by stacking a base vector on top of itself multiplied by 0.5 and then I stack those on the same base vector shifted by half the dynamic range of the uniform distribution. This process continues with multiplication by a third, two thirds and 1 and then shifting and so on until i have the number of required vectors in that part of the matrix.
I know it sounds incomprehensible. But, unfortunately, I couldn't find a way to explain it better. Hopefully, reading the code would shed some more light.
I hope this "staircase" method will be more reliable and useful.
import numpy as np
from matplotlib import pyplot as plt
'''
params:
N - base dimention
M - matrix length
R - matrix rank
high - max value of matrix
low - min value of the matrix
'''
N = 100
M = 600
R = 5
high = 20
low = 0
# base vectors of the matrix
base = low+np.random.rand(R-1, N)*(high-low)
def build_staircase(base, num_stairs, low, high):
'''
create a uniformly distributed matrix with rank 2 'num_stairs' different
vectors whose elements are all uniformly distributed like the values of
'base'.
'''
l = levels(num_stairs)
vectors = []
for l_i in l:
for i in range(l_i):
vector_dynamic = (base-low)/l_i
vector_bias = low+np.ones_like(base)*i*((high-low)/l_i)
vectors.append(vector_dynamic+vector_bias)
return np.array(vectors)
def levels(total):
'''
create a sequence of stritcly increasing numbers summing up to the total.
'''
l = []
sum_l = 0
i = 1
while sum_l < total:
l.append(i)
i +=1
sum_l = sum(l)
i = 0
while sum_l > total:
l[i] -= 1
if l[i] == 0:
l.pop(i)
else:
i += 1
if i == len(l):
i = 0
sum_l = sum(l)
return l
n_rm = R-1 # number of matrix subsections
m_rm = M//n_rm
len_rms = [ M//n_rm for i in range(n_rm)]
len_rms[-1] += M%n_rm
rm_list = []
for len_rm in len_rms:
# create a matrix with uniform entries with rank 2
# out of the vector 'base[i]' and a ones vector.
rm_list.append(build_staircase(
base = base[i],
num_stairs = len_rms[i],
low = low,
high = high,
))
rm = np.concatenate(rm_list)
plt.hist(rm.flatten(), bins = 100)
and now with N = 1000, M = 6000 to empirically demonstrate the nearly asymptotic behavior: