The hue-rotate()
filter function "rotates the hue of an element ... specified as an angle". If this were true, filter: hue-rotate(180deg) hue-rotate(180deg)
would have no effect. But it definitely does have an effect:
.square {
height: 3rem;
padding: 1rem;
background: linear-gradient( 90deg, rgba(255, 0, 0, 1) 0%, rgba(255, 154, 0, 1) 10%, rgba(208, 222, 33, 1) 20%, rgba(79, 220, 74, 1) 30%, rgba(63, 218, 216, 1) 40%, rgba(47, 201, 226, 1) 50%, rgba(28, 127, 238, 1) 60%, rgba(95, 21, 242, 1) 70%, rgba(186, 12, 248, 1) 80%, rgba(251, 7, 217, 1) 90%, rgba(255, 0, 0, 1) 100%);
font-family: monospace;
font-weight: bold;
color: white;
}
.double-invert {
filter: hue-rotate(180deg) hue-rotate(180deg);
}
<div class="square">filter: none</div>
<div class="square double-invert">filter: hue-rotate(180deg) hue-rotate(180deg)</div>
What is happening here? What does hue-rotate
actually do? And how can I achieve a hue rotation that is its own inverse? (Or, how can I come up with a filter that inverts the hue rotation?)
Update: following Temani Aiff's answer, it seems that hue-rotate(180deg)
is actually a matrix multiplication. However, it's unclear what matrix it's actually using. The following shows that we can reimplement the SVG filter type="hueRotate"
as a raw matrix, but the CSS filter hue-rotate
does not actually match either of those:
.square {
height: 3rem;
padding: 1rem;
background: linear-gradient( 90deg, rgba(255, 0, 0, 1) 0%, rgba(255, 154, 0, 1) 10%, rgba(208, 222, 33, 1) 20%, rgba(79, 220, 74, 1) 30%, rgba(63, 218, 216, 1) 40%, rgba(47, 201, 226, 1) 50%, rgba(28, 127, 238, 1) 60%, rgba(95, 21, 242, 1) 70%, rgba(186, 12, 248, 1) 80%, rgba(251, 7, 217, 1) 90%, rgba(255, 0, 0, 1) 100%);
font-family: monospace;
font-weight: bold;
color: white;
}
.hue-rotate {
filter: hue-rotate(180deg);
}
.hue-rotate-svg {
filter: url(#svgHueRotate180);
}
.hue-rotate-svg-matrix {
filter: url(#svgHueRotate180Matrix);
}
<svg style="position: absolute; top: -99999px" xmlns="http://www.w3.org/2000/svg">
<filter id="svgHueRotate180">
<feColorMatrix in="SourceGraphic" type="hueRotate"
values="180" />
</filter>
<!-- Following matrix calculated following spec -->
<filter id="svgHueRotate180Matrix">
<feColorMatrix in="SourceGraphic" type="matrix"
values="
-0.574 1.43 0.144 0 0
0.426 0.43 0.144 0 0
0.426 1.43 -0.856 0 0
0 0 0 1 0" />
</filter>
</svg>
<div class="square">filter: none</div>
<div class="square hue-rotate">filter: hue-rotate(180deg)</div>
<div class="square hue-rotate-svg">using SVG hueRotate</div>
<div class="square hue-rotate-svg-matrix">using SVG raw matrix</div>
At least in Chrome and Firefox, hue-rotate
is doing something distinct from the SVG filters. But what is it doing?!
hue-rotate(X) hue-rotate(X)
is not equivalent to hue-rotate(X+X)
as shown below:
.square {
height: 3rem;
padding: 1rem;
background: linear-gradient( 90deg, rgba(255, 0, 0, 1) 0%, rgba(255, 154, 0, 1) 10%, rgba(208, 222, 33, 1) 20%, rgba(79, 220, 74, 1) 30%, rgba(63, 218, 216, 1) 40%, rgba(47, 201, 226, 1) 50%, rgba(28, 127, 238, 1) 60%, rgba(95, 21, 242, 1) 70%, rgba(186, 12, 248, 1) 80%, rgba(251, 7, 217, 1) 90%, rgba(255, 0, 0, 1) 100%);
font-family: monospace;
font-weight: bold;
color: white;
}
.single-invert {
filter: hue-rotate(360deg);
}
.double-invert {
filter: hue-rotate(180deg) hue-rotate(180deg);
}
<div class="square">filter: none</div>
<div class="square single-invert">filter: hue-rotate(360deg) </div>
<div class="square double-invert">filter: hue-rotate(180deg) hue-rotate(180deg)</div>
To understand you need to dig in to the math formula. From the specification the hue-rotate()
is:
<filter id="hue-rotate">
<feColorMatrix type="hueRotate" values="[angle]"/>
</filter>
and for feColorMatrix
we have have a matrix calculation. I will give you the matrix for each case after the math (you can try it yourself following the specification)
for 180deg
-0.574 1.43 0.144
0.426 0.43 0.144
0.426 1.43 -0.856
For 360deg
it's the identity matrix
1 0 0
0 1 0
0 0 1
When you apply two filters, it means you will use the same matrix twice which is nothing but a matrix multiplication. So you have to do the below multiplication:
|-0.574 1.43 0.144| |-0.574 1.43 0.144|
| 0.426 0.43 0.144| x | 0.426 0.43 0.144|
| 0.426 1.43 -0.856| | 0.426 1.43 -0.856|
to get:
1 8.326 -1.387
1.387 1 0
0 0 1
And it's not the identity so filtering twice using hue-rotate(180deg)
is not equivalent to hue-rotate(360deg)
. In other words, don't see it as "sum" but rather as a "multiplication".