I am new to python multiprocessing, a background about the below code. I am trying to create three processes, one to add an element to the list, one to modify element in the list, and one to print the list.
The three processes are ideally using the same list that is in shared memory, initiated using manager
.
The problem I face is that testprocess2
is not able to set the value to 0
, basically, it is not able to alter the list.
class Trade:
def __init__(self, id):
self.exchange = None
self.order_id = id
class testprocess2(Process):
def __init__(self, trades, lock):
super().__init__(args=(trades, lock))
self.trades = trades
self.lock = lock
def run(self):
while True:
# lock.acquire()
print("Altering")
for idx in range(len(self.trades)):
self.trades[idx].order_id = 0
# lock.release()
sleep(1)
class testprocess1(Process):
def __init__(self, trades, lock):
super().__init__(args=(trades, lock))
self.trades = trades
self.lock = lock
def run(self):
while True:
print("start")
for idx in range(len(self.trades)):
print(self.trades[idx].order_id)
sleep(1)
class testprocess(Process):
def __init__(self, trades, lock):
super().__init__(args=(trades, lock))
self.trades = trades
self.lock = lock
def run(self):
while True:
# lock.acquire()
n = random.randint(0, 9)
print("adding random {}".format(n))
self.trades.append(Trade(n))
# lock.release()
# print(trades)
sleep(5)
if __name__ == "__main__":
with Manager() as manager:
records = manager.list([Trade(5)])
lock = Lock()
p1 = testprocess(records, lock)
p1.start()
p2 = testprocess1(records, lock)
p2.start()
p3 = testprocess2(records, lock)
p3.start()
p1.join()
p2.join()
p3.join()
Strictly speaking your managed list is not in shared memory and it is very important to understand what is going on. The actual list holding your Trade
instances resides in a process that is created when you execute the Manager()
call. When you then execute records = manager.list([Trade(5)])
, records
is not a direct reference to that list because, as I said, we are not dealing with shared memory. It is instead a special proxy object that implements the same methods as a list but when you, for example, invoke append
on this proxy object, it takes the argument you are trying to append and serializes it and transmits it to the manager's process via either a socket or pipe where it gets de-serialized and appended to the actual list. In short, operations on the proxy object are turned into remote method calls.
Now for your problem. You are trying to reset the order_id
attribute with the following statement:
self.trades[idx].order_id = 0
Since we are dealing with a remote list via a proxy object, the above statements unfortunately become the equivalent of:
trade = self.trades[idx] # fetch object from the remote list
trade.order_id = 0 # reset the order_id to 0 on the local copy
What is missing is updating the list with the newly updated trade object:
self.trades[idx] = trade
So your single update statement really needs to be replaced with the above 3-statement sequence.
I have also taken the liberty to modify your code in several ways.
__init__
methods), I have created an abstract base class, TestProcess
that these classes inherit from. All they have to do is provide a run
method.__init__
method of the Process
class. If you were not deriving your classes from Process
and you just wanted to, for example, have your newly created process be running a function foo
that takes arguments trades and lock, then you would specify p1 = Process(target=foo, args=(trades, lock))
. That is the real purpose of the args
argument, i.e. to be used with the target argument. See documentation for threading.Thread
class for details. I actually see very little value in actually deriving your classes from multiprocessing.Process
(by not doing so there is better opportunity for reuse). But since you did, you are already in your __init__
method setting instance attributes self.trades
and self.lock
, which will be used when your run
method is invoked implicitly by your calling the start
method. There is nothing further you need to do. See the two additional code examples at the end.from multiprocessing import Process, Manager, Lock
from time import sleep
import random
from abc import ABC, abstractmethod
class Trade:
def __init__(self, id):
self.exchange = None
self.order_id = id
class TestProcess(Process, ABC):
def __init__(self, trades, lock):
Process.__init__(self, daemon=True)
self.trades = trades
self.lock = lock
@abstractmethod
def run():
pass
class TestProcess2(TestProcess):
def run(self):
while True:
# lock.acquire()
print("Altering")
for idx in range(len(self.trades)):
trade = self.trades[idx]
trade.order_id = 0
# We must tell the managed list that it has been updated!!!:
self.trades[idx] = trade
# lock.release()
sleep(1)
class TestProcess1(TestProcess):
def run(self):
while True:
print("start")
for idx in range(len(self.trades)):
print(f'index = {idx}, order id = {self.trades[idx].order_id}')
sleep(1)
class TestProcess(TestProcess):
def run(self):
while True:
# lock.acquire()
n = random.randint(0, 9)
print("adding random {}".format(n))
self.trades.append(Trade(n))
# lock.release()
# print(trades)
sleep(5)
if __name__ == "__main__":
with Manager() as manager:
records = manager.list([Trade(5)])
lock = Lock()
p1 = TestProcess(records, lock)
p1.start()
p2 = TestProcess1(records, lock)
p2.start()
p3 = TestProcess2(records, lock)
p3.start()
sleep(15) # run for 15 seconds
Using classes not derived from multiprocessing.Process
from multiprocessing import Process, Manager, Lock
from time import sleep
import random
from abc import ABC, abstractmethod
class Trade:
def __init__(self, id):
self.exchange = None
self.order_id = id
class TestProcess(ABC):
def __init__(self, trades, lock):
self.trades = trades
self.lock = lock
@abstractmethod
def process():
pass
class TestProcess2(TestProcess):
def process(self):
while True:
# lock.acquire()
print("Altering")
for idx in range(len(self.trades)):
trade = self.trades[idx]
trade.order_id = 0
# We must tell the managed list that it has been updated!!!:
self.trades[idx] = trade
# lock.release()
sleep(1)
class TestProcess1(TestProcess):
def process(self):
while True:
print("start")
for idx in range(len(self.trades)):
print(f'index = {idx}, order id = {self.trades[idx].order_id}')
sleep(1)
class TestProcess(TestProcess):
def process(self):
while True:
# lock.acquire()
n = random.randint(0, 9)
print("adding random {}".format(n))
self.trades.append(Trade(n))
# lock.release()
# print(trades)
sleep(5)
if __name__ == "__main__":
with Manager() as manager:
records = manager.list([Trade(5)])
lock = Lock()
tp = TestProcess(records, lock)
p1 = Process(target=tp.process, daemon=True)
p1.start()
tp1 = TestProcess1(records, lock)
p2 = Process(target=tp1.process, daemon=True)
p2.start()
tp2 = TestProcess2(records, lock)
p3 = Process(target=tp2.process, daemon=True)
p3.start()
sleep(15) # run for 15 seconds
Using functions instead of classes derived from multiprocessing.Process
from multiprocessing import Process, Manager, Lock
from time import sleep
import random
class Trade:
def __init__(self, id):
self.exchange = None
self.order_id = id
def testprocess2(trades, lock):
while True:
# lock.acquire()
print("Altering")
for idx in range(len(trades)):
trade = trades[idx]
trade.order_id = 0
# We must tell the managed list that it has been updated!!!:
trades[idx] = trade
# lock.release()
sleep(1)
def testprocess1(trades, lock):
while True:
print("start")
for idx in range(len(trades)):
print(f'index = {idx}, order id = {trades[idx].order_id}')
sleep(1)
def testprocess(trades, lock):
while True:
# lock.acquire()
n = random.randint(0, 9)
print("adding random {}".format(n))
trades.append(Trade(n))
# lock.release()
# print(trades)
sleep(5)
if __name__ == "__main__":
with Manager() as manager:
records = manager.list([Trade(5)])
lock = Lock()
p1 = Process(target=testprocess, args=(records, lock), daemon=True)
p1.start()
p2 = Process(target=testprocess1, args=(records, lock), daemon=True)
p2.start()
p3 = Process(target=testprocess2, args=(records, lock), daemon=True)
p3.start()
sleep(15) # run for 15 seconds