How can you implement the following function with only four NOR gates and inverters:
F = w’xz + w’yz + x’yz’ + wxy’z
d = wyz
First get the Karnaugh map:
w’x z + w’ yz + x’yz’ + wxy’z
a b c e
wx\yz 00 01 11 10
---- c
00 0 0 | 1| |1 |
| b| ----
----|----
01 0 |a1 | 1|| 0
----|--|-
---
11 0 1e 0 0
---
10 0 0 0 |1 |
Then get the Product Of Sums:
wx\yz 00 01 11 10
| |
| |
00 | 0 0| 1 1
--------
------ -------
01 0| 1 1 | 0
| | A
| ---|
11 0| 1 |0|| 0
------ |C|--------
-------- | |
10 | 0 0| |0| 1
| | ---
| |
| B |
(x'+z)(x+y)(w'+y'+z')
A B C
Then reduce to utilize the available d =wyz pin, and to get the requested 4 nors:
=( (x'+z)(x+y) (w'+y'+z'))''
=(((x'+z)(x+y))(w'+y'+z'))''
=(((x'+z)(x+y))'+(w'+y'+z')')'
=(((x'+z)(x+y))'+(wyz))'
=(((x'+z)(x+y))'+d)'
=(((x'+z)'+(x+y)')+d)'
=(((x'+z)'+(x+y)')''+d)'
^ ^ ^ ^ 4 nors
^ ^ 2 inverters