I'm attempting to create a std::vector<std::set<int>>
with one set for each NUMA-node, containing the thread-ids obtained using omp_get_thread_num()
.
Idea:
Code: (Intel compiler, OpenMP)
// create data which will be shared by multiple threads
const auto part_size = std::size_t{50 * 1024 * 1024 / sizeof(double)}; // 50 MB
const auto size = 2 * part_size;
auto container = std::unique_ptr<double>(new double[size]);
// open a parallel section
auto thread_count = 0;
auto thread_id_min_duration = std::multimap<double, int>{};
#ifdef DECIDE_THREAD_COUNT
#pragma omp parallel num_threads(std::thread::hardware_concurrency())
#else
#pragma omp parallel
#endif
{
// perform first touch using thread 0
const auto thread_id = omp_get_thread_num();
if (thread_id == 0)
{
thread_count = omp_get_num_threads();
for (auto index = std::size_t{}; index < size; ++index)
{
container.get()[index] = static_cast<double>(std::rand() % 10 + 1);
}
}
#pragma omp barrier
// access the data using all threads individually
#pragma omp for schedule(static, 1)
for (auto thread_counter = std::size_t{}; thread_counter < thread_count; ++thread_counter)
{
// calculate the minimum access time of this thread
auto this_thread_min_duration = std::numeric_limits<double>::max();
for (auto experiment_counter = std::size_t{}; experiment_counter < 250; ++experiment_counter)
{
const auto* data = experiment_counter % 2 == 0 ? container.get() : container.get() + part_size;
const auto start_timestamp = omp_get_wtime();
for (auto index = std::size_t{}; index < part_size; ++index)
{
static volatile auto exceedingly_interesting_value_wink_wink = data[index];
}
const auto end_timestamp = omp_get_wtime();
const auto duration = end_timestamp - start_timestamp;
if (duration < this_thread_min_duration)
{
this_thread_min_duration = duration;
}
}
#pragma omp critical
{
thread_id_min_duration.insert(std::make_pair(this_thread_min_duration, thread_id));
}
}
} // #pragma omp parallel
Not shown here is code which outputs the minimum access times sorted into the multimap.
Env. and Output
OMP_PLACES
and OMP_PROC_BIND
work?I am attempting to not use SMT by using export OMP_PLACES=cores OMP_PROC_BIND=spread OMP_NUM_THREADS=24
. However, I'm getting this output:
What's puzzling me is that I'm having the same access times on all threads. Since I'm trying to spread them across the 2 NUMA nodes, I expect to neatly see 12 threads with access time, say, x
and another 12 with access time ~2x
.
Additional Information
Even more puzzling are the following environments and their outputs:
export OMP_PLACES=cores OMP_PROC_BIND=spread OMP_NUM_THREADS=26
export OMP_PLACES=cores OMP_PROC_BIND=spread OMP_NUM_THREADS=48
Any help in understanding this phenomenon would be much appreciated.
After more investigation, I note the following:
Following this, I started using the work-load manager's own thread binding/pinning system, and adapted my benchmark to lock the memory page(s) on which my data lay. Furthermore, giving in to my programmer's paranoia, I ditched the std::unique_ptr
for fear that it may lay its own first touch after allocating the memory.
// create data which will be shared by multiple threads
const auto size_per_thread = std::size_t{50 * 1024 * 1024 / sizeof(double)}; // 50 MB
const auto total_size = thread_count * size_per_thread;
double* data = nullptr;
posix_memalign(reinterpret_cast<void**>(&data), sysconf(_SC_PAGESIZE), total_size * sizeof(double));
if (data == nullptr)
{
throw std::runtime_error("could_not_allocate_memory_error");
}
// perform first touch using thread 0
#pragma omp parallel num_threads(thread_count)
{
if (omp_get_thread_num() == 0)
{
#pragma omp simd safelen(8)
for (auto d_index = std::size_t{}; d_index < total_size; ++d_index)
{
data[d_index] = -1.0;
}
}
} // #pragma omp parallel
mlock(data, total_size); // page migration is a real thing...
// open a parallel section
auto thread_id_avg_latency = std::multimap<double, int>{};
auto generator = std::mt19937(); // heavy object can be created outside parallel
#pragma omp parallel num_threads(thread_count) private(generator)
{
// access the data using all threads individually
#pragma omp for schedule(static, 1)
for (auto thread_counter = std::size_t{}; thread_counter < thread_count; ++thread_counter)
{
// seed each thread's generator
generator.seed(thread_counter + 1);
// calculate the minimum access latency of this thread
auto this_thread_avg_latency = 0.0;
const auto experiment_count = 250;
for (auto experiment_counter = std::size_t{}; experiment_counter < experiment_count; ++experiment_counter)
{
const auto start_timestamp = omp_get_wtime() * 1E+6;
for (auto counter = std::size_t{}; counter < size_per_thread / 100; ++counter)
{
const auto index = std::uniform_int_distribution<std::size_t>(0, size_per_thread-1)(generator);
auto& datapoint = data[thread_counter * size_per_thread + index];
datapoint += index;
}
const auto end_timestamp = omp_get_wtime() * 1E+6;
this_thread_avg_latency += end_timestamp - start_timestamp;
}
this_thread_avg_latency /= experiment_count;
#pragma omp critical
{
thread_id_avg_latency.insert(std::make_pair(this_thread_avg_latency, omp_get_thread_num()));
}
}
} // #pragma omp parallel
std::free(data);
With these changes, I am noticing the difference I expected.
Further notes:
hwloc/lstopo
, numactl
and lscpu
seems to number them (logical ID?)The most astonishing things are that the difference in latencies is very low, and that memory page migration may happen, which begs the question, why should we care about first-touch and all the rest of the NUMA concerns at all?