I am attempting to use Google's Cloud Natural Language API with Google Colab.
I started by following Google's simple example: https://cloud.google.com/natural-language/docs/samples/language-entity-sentiment-text#language_entity_sentiment_text-python
So, my Colab notebook was literally just one code cell:
from google.cloud import language_v1
client = language_v1.LanguageServiceClient()
text_content = 'Grapes are good. Bananas are bad.'
# Available types: PLAIN_TEXT, HTML
type_ = language_v1.types.Document.Type.PLAIN_TEXT
# Optional. If not specified, the language is automatically detected.
# For list of supported languages:
# https://cloud.google.com/natural-language/docs/languages
language = "en"
document = {"content": text_content, "type_": type_, "language": language}
# Available values: NONE, UTF8, UTF16, UTF32
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entity_sentiment(request = {'document': document, 'encoding_type': encoding_type})
That resulted in several error messages, which I seemed to resolve, mostly with the help of this SO post, by slightly updating the code as follows:
from google.cloud import language_v1
client = language_v1.LanguageServiceClient()
text_content = 'Grapes are good. Bananas are bad.'
# Available types: PLAIN_TEXT, HTML
type_ = language_v1.types.Document.Type.PLAIN_TEXT
# Optional. If not specified, the language is automatically detected.
# For list of supported languages:
# https://cloud.google.com/natural-language/docs/languages
language = "en"
#document = {"content": text_content, "type_": type_, "language": language} ## "type_" is not valid???
document = {"content": text_content, "type": type_, "language": language}
# Available values: NONE, UTF8, UTF16, UTF32
#encoding_type = language_v1.EncodingType.UTF8 ## Does not seem to work
encoding_type = "UTF8"
#response = client.analyze_entity_sentiment(request = {'document': document, 'encoding_type': encoding_type}) ## remove request
response = client.analyze_entity_sentiment( document = document, encoding_type = encoding_type )
Which, after 10 excruciating minutes, results in the following error:
_InactiveRpcError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/google/api_core/grpc_helpers.py in error_remapped_callable(*args, **kwargs)
72 try:
---> 73 return callable_(*args, **kwargs)
74 except grpc.RpcError as exc:
11 frames
_InactiveRpcError: <_InactiveRpcError of RPC that terminated with:
status = StatusCode.UNAVAILABLE
details = "Getting metadata from plugin failed with error: ("Failed to retrieve http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/?recursive=true from the Google Compute Enginemetadata service. Status: 404 Response:\nb''", <google.auth.transport.requests._Response object at 0x7f68cee39a90>)"
debug_error_string = "{"created":"@1648840699.964791285","description":"Getting metadata from plugin failed with error: ("Failed to retrieve http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/?recursive=true from the Google Compute Enginemetadata service. Status: 404 Response:\nb''", <google.auth.transport.requests._Response object at 0x7f68cee39a90>)","file":"src/core/lib/security/credentials/plugin/plugin_credentials.cc","file_line":91,"grpc_status":14}"
>
The above exception was the direct cause of the following exception:
ServiceUnavailable Traceback (most recent call last)
ServiceUnavailable: 503 Getting metadata from plugin failed with error: ("Failed to retrieve http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/?recursive=true from the Google Compute Enginemetadata service. Status: 404 Response:\nb''", <google.auth.transport.requests._Response object at 0x7f68cee39a90>)
The above exception was the direct cause of the following exception:
RetryError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/six.py in raise_from(value, from_value)
RetryError: Deadline of 600.0s exceeded while calling functools.partial(<function _wrap_unary_errors.<locals>.error_remapped_callable at 0x7f68cedb69e0>, document {
type: PLAIN_TEXT
content: "Grapes are good. Bananas are bad."
language: "en"
}
encoding_type: UTF8
, metadata=[('x-goog-api-client', 'gl-python/3.7.13 grpc/1.44.0 gax/1.26.3 gapic/1.2.0')]), last exception: 503 Getting metadata from plugin failed with error: ("Failed to retrieve http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/?recursive=true from the Google Compute Enginemetadata service. Status: 404 Response:\nb''", <google.auth.transport.requests._Response object at 0x7f68cee39a90>)
Can you please help me with this simple "Hello world!" for Cloud Natural Language with Google Colab?
My hunch is that I need to create a service account and somehow provide that key file to Colab, like this SO answer. If so, can you hold my hand a little more and tell me how I would implement that in Colab (vs. running locally)? I am new to Colab.
This appears to have worked:
Start by creating a service account, generating a key file, and saving the JSON file locally. https://console.cloud.google.com/iam-admin/serviceaccounts (I would still love to know which, if any roles I should select in the service account generation: "Grant this service account access to project")
Cell 1: Upload a json file with my service account keys
from google.colab import files
uploaded = files.upload()
Cell 2:
from google.oauth2 import service_account
from google.cloud import language_v1
client = language_v1.LanguageServiceClient.from_service_account_json("my-super-important-gcp-key-file.json")
Cell 3:
text_content = 'Grapes are good. Bananas are bad.'
type_ = language_v1.types.Document.Type.PLAIN_TEXT
language = "en"
document = {"content": text_content, "type": type_, "language": language}
encoding_type = "UTF8"
response = client.analyze_entity_sentiment( document = document, encoding_type = encoding_type )
response
Here is the output:
entities {
name: "Grapes"
type: OTHER
salience: 0.8335162997245789
mentions {
text {
content: "Grapes"
}
type: COMMON
sentiment {
magnitude: 0.800000011920929
score: 0.800000011920929
}
}
sentiment {
magnitude: 0.800000011920929
score: 0.800000011920929
}
}
entities {
name: "Bananas"
type: OTHER
salience: 0.16648370027542114
mentions {
text {
content: "Bananas"
begin_offset: 17
}
type: COMMON
sentiment {
magnitude: 0.699999988079071
score: -0.699999988079071
}
}
sentiment {
magnitude: 0.699999988079071
score: -0.699999988079071
}
}
language: "en"
I am certain that I have just violated all sorts of security protocols. So, please, I welcome any advice for how I should improve this process.