The following function shall be used with Caret's train()
function. Without any factor variables or without cross-validation it works fine.
The problems appear when using factors as predictors and repeatedcv
, because in the folds not all the factors are present but still appear within the factor levels:
Consider the following adapted cforest model (from the package partykit
):
cforest_partykit <- list(label = "Conditional Inference Random Forest with partykit",
library = c("partykit", "party"),
loop = NULL,
type = c("Classification", "Regression"),
parameters = data.frame(parameter = 'mtry',
class = 'numeric',
label = "#Randomly Selected Predictors"),
grid = function(x, y, len = NULL, search = "grid"){
if(search == "grid") {
out <- data.frame(mtry = caret::var_seq(p = ncol(x),
classification = is.factor(y),
len = len))
} else {
out <- data.frame(mtry = unique(sample(1:ncol(x), replace = TRUE, size = len)))
}
out
},
fit = function(x, y, wts, param, lev, last, classProbs, ...) {
# make consistent factor levels
if(any(sapply(x, is.factor))){
fac_col_names <- names(grep("factor", sapply(x, class), value=TRUE))
# assign present levels to each subset
for (i in 1:length(fac_col_names)) {
x[, which(names(x) == fac_col_names[i])] <- factor(x[, which(names(x) == fac_col_names[i])],
levels = as.character(unique(x[, which(names(x) == fac_col_names[i])])))
}
}
dat <- if(is.data.frame(x)) x else as.data.frame(x, stringsAsFactors = TRUE)
dat$.outcome <- y
theDots <- list(...)
if(any(names(theDots) == "mtry")) # # change controls to mtry?
{
theDots$mtry <- as.integer(param$mtry) # remove gtcrl
theDots$mtry
theDots$mtry <- NULL
} else mtry <- min(param$mtry, ncol(x))
## pass in any model weights
if(!is.null(wts)) theDots$weights <- wts
modelArgs <- c(list(formula = as.formula(.outcome ~ .),
data = dat,
mtry = mtry), # change controls to mtry?
theDots)
out <- do.call(partykit::cforest, modelArgs)
out
},
predict = function(modelFit, newdata = NULL, submodels = NULL) {
if(!is.null(newdata) && !is.data.frame(newdata)) newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)
# make consistent factor levels
if(any(sapply(newdata, is.factor))){
fac_col_names <- names(grep("factor", sapply(newdata, class), value=TRUE))
# assign present levels to each subset
for (i in 1:length(fac_col_names)) {
newdata[, which(names(newdata) == fac_col_names[i])] <- factor(newdata[, which(names(newdata) == fac_col_names[i])],
levels = as.character(unique(newdata[, which(names(newdata) == fac_col_names[i])])))
}
}
## party builds the levels into the model object, so I'm
## going to assume that all the levels will be passed to
## the output
out <- partykit:::predict.cforest(modelFit, newdata = newdata, OOB = TRUE) # predict_party, id?
if(is.matrix(out)) out <- out[,1]
if(!is.null(modelFit$'(response)')) out <- as.character(out) # if(!is.null(modelFit@responses@levels$.outcome)) out <- as.character(out)
out
},
prob = function(modelFit, newdata = NULL, submodels = NULL) { # submodels ?
if(!is.null(newdata) && !is.data.frame(newdata)) newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)
obsLevels <- levels(modelFit$'(response)')
rawProbs <- partykit::predict.cforest(modelFit, newdata = newdata, OOB = TRUE) # predict(, type="prob) ? id?
probMatrix <- matrix(unlist(rawProbs), ncol = length(obsLevels), byrow = TRUE)
out <- data.frame(probMatrix)
colnames(out) <- obsLevels
rownames(out) <- NULL
out
},
predictors = function(x, ...) {
vi <- partykit::varimp(x, ...)
names(vi)[vi != 0]
},
varImp = function(object, ...) {
variableImp <- partykit::varimp(object, ...)
out <- data.frame(Overall = variableImp)
out
},
tags = c("Random Forest", "Ensemble Model", "Bagging", "Implicit Feature Selection", "Accepts Case Weights"),
levels = function(x) levels(x@data@get("response")[,1]),
sort = function(x) x[order(x[,1]),],
oob = function(x) {
obs <- x@data@get("response")[,1]
pred <- partykit:::predict.cforest(x, OOB = TRUE, newdata = NULL)
postResample(pred, obs)
})
When applying it within train and repeatedcv using a data frame with a factor predictor variable, an error occurs:
library(caret)
library(party)
library(partykit)
dat <- as.data.frame(ChickWeight)[1:20,]
dat$class <- as.factor(rep(letters[seq( from = 1, to = 20)], each=1))
# specifiy folds with CreateMultiFolds
set.seed(43, kind = "Mersenne-Twister", normal.kind = "Inversion")
folds_train <- caret::createMultiFolds(y = dat$weight,
k = 3,
times = 2)
# specifiy trainControl for tuning mtry and with specified folds
finalcontrol <- caret::trainControl(search = "grid", method = "repeatedcv", number = 3, repeats = 2,
index = folds_train,
savePred = T)
preds <- dat[,2:5]
response <- dat[,1]
# tune hyperparameter mtry and build final model
tunegrid <- expand.grid(mtry=c(1,2,3,4))
#set.seed(42, kind = "Mersenne-Twister", normal.kind = "Inversion")
model <- caret::train(x = preds, # predictors
y = response, # response
method = cforest_partykit,
metric = "RMSE",
tuneGrid = tunegrid,
trControl = finalcontrol,
ntree = 150)
warnings()
1: predictions failed for Fold1.Rep1: mtry=1 Error in model.frame.default(object$predictf, data = newdata, na.action = na.pass, : factor class has new levels a, c, g, k, m, p, s, t
The aim is to identify the levels of each fold.rep and assign only those, which are present in the respective fold:
for (i in 1:length(folds_train)) {
preds_temp <- preds[folds_train[[i]],]
# check levels
levels(preds_temp$class)
# which are actually present
unique(preds_temp$class)
# assign present levels to each subset
preds_temp$class <- factor(preds_temp$class, levels = as.character(unique(preds_temp$class)))
}
I tried to include the assignment of the right factor levels within the cforest_partykit
function (# make consistent factor levels
), but it seems to have no effect.
How could I implement this in the caret train()
or trainControl()
or createDataPartition()
function?
To make sure cforest_partykit
treats categorical variables appropriately, it is best to create the design matrix explicitly through the model.matrix
command.
For example
# Create a formula for the model
model_formula <- as.formula("y_column ~ . -1")
# Then create the design matrix
model_train.design.matrix <- model.matrix(model_formula, data = dat)
# Add in the y-variable
model_train.design.data <- cbind(y_column = data$y_column, model_train.design.matrix)