pythonmatplotlibcolorsdata-visualizationradial-gradients

Getting the names of colors from matplotlib colormap object


I want to get english names of colors from a colormaps object. So far I read that you can get numeric values of colors. For example -

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap

viridis = cm.get_cmap('viridis', 12)
print(viridis)
print(viridis(0.56))

OUTPUTS

<matplotlib.colors.ListedColormap object at 0x7fb112c73ba8>

(0.119512, 0.607464, 0.540218, 1.0)

It is also clear that LineSegColor is a tuple that matches a string and a dict containing a hash between strings and matrices. Matrices are representing a gradient in some n*m space for the expression of particular color.

cdict1 = {'red':   ((0.0, 0.0, 0.0),
                    (0.5, 0.0, 0.1),
                    (1.0, 1.0, 1.0)),

          'green': ((0.0, 0.0, 0.0),
                    (1.0, 0.0, 0.0)),

          'blue':  ((0.0, 0.0, 1.0),
                    (0.5, 0.1, 0.0),
                    (1.0, 0.0, 0.0))
          }
    blue_red1 = LinearSegmentedColormap('BlueRed1', cdict1)

How to reverse engineer the creation of color to Virdis?

Here are few links I visited -


Solution

  • Viridis wasn't created as a LinearSegmentedColormap. It is a carefully constructed list of 256 rgb values. You could create such a colormap via

    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    import numpy as np
    
    viridis = plt.get_cmap('viridis')
    new_viridis = ListedColormap(viridis(np.arange(256)))
    

    None of the 256 individual colors corresponds to a named color (at least not in the 148 long CSS4 list). Here is some code to create a list of close colors (the principal code comes from Convert RGB color to English color name, like 'green'):

    import matplotlib.pyplot as plt
    from matplotlib.colors import to_hex, to_rgb
    import numpy as np
    
    def find_closest_name(col):
        rv, gv, bv = to_rgb(col)
        min_colors = {}
        for col in CSS4_COLORS:
            rc, gc, bc = to_rgb(col)
            min_colors[(rc - rv) ** 2 + (gc - gv) ** 2 + (bc - bv) ** 2] = col
        closest = min(min_colors.keys())
        return min_colors[closest], np.sqrt(closest)
    
    viridis = plt.get_cmap('viridis')
    for i in range(256):
        closest_name, dist = find_closest_name(viridis(i))
        print(f'{i:3d} {to_hex((rv, gv, bv))} closest:{closest_name})  dist:{dist:.3f}')
    

    Which gives the following list:

      0 #fde725 closest:indigo)  dist:0.182
      1 #fde725 closest:indigo)  dist:0.177
      2 #fde725 closest:indigo)  dist:0.171
      3 #fde725 closest:indigo)  dist:0.165
      4 #fde725 closest:indigo)  dist:0.160
      5 #fde725 closest:indigo)  dist:0.156
      6 #fde725 closest:indigo)  dist:0.151
      7 #fde725 closest:indigo)  dist:0.148
      8 #fde725 closest:indigo)  dist:0.144
      9 #fde725 closest:indigo)  dist:0.141
     10 #fde725 closest:indigo)  dist:0.139
     11 #fde725 closest:indigo)  dist:0.137
     12 #fde725 closest:indigo)  dist:0.135
     13 #fde725 closest:indigo)  dist:0.134
     14 #fde725 closest:indigo)  dist:0.133
     15 #fde725 closest:indigo)  dist:0.133
     16 #fde725 closest:indigo)  dist:0.133
     17 #fde725 closest:indigo)  dist:0.134
     18 #fde725 closest:indigo)  dist:0.135
     19 #fde725 closest:indigo)  dist:0.136
     20 #fde725 closest:indigo)  dist:0.138
     21 #fde725 closest:indigo)  dist:0.140
     22 #fde725 closest:indigo)  dist:0.142
     23 #fde725 closest:darkslateblue)  dist:0.145
     24 #fde725 closest:darkslateblue)  dist:0.138
     25 #fde725 closest:darkslateblue)  dist:0.132
     26 #fde725 closest:darkslateblue)  dist:0.125
     27 #fde725 closest:darkslateblue)  dist:0.119
     28 #fde725 closest:darkslateblue)  dist:0.113
     29 #fde725 closest:darkslateblue)  dist:0.107
     30 #fde725 closest:darkslateblue)  dist:0.101
     31 #fde725 closest:darkslateblue)  dist:0.095
     32 #fde725 closest:darkslateblue)  dist:0.089
     33 #fde725 closest:darkslateblue)  dist:0.083
     34 #fde725 closest:darkslateblue)  dist:0.077
     35 #fde725 closest:darkslateblue)  dist:0.072
     36 #fde725 closest:darkslateblue)  dist:0.067
     37 #fde725 closest:darkslateblue)  dist:0.061
     38 #fde725 closest:darkslateblue)  dist:0.056
     39 #fde725 closest:darkslateblue)  dist:0.052
     40 #fde725 closest:darkslateblue)  dist:0.047
     41 #fde725 closest:darkslateblue)  dist:0.043
     42 #fde725 closest:darkslateblue)  dist:0.039
     43 #fde725 closest:darkslateblue)  dist:0.036
     44 #fde725 closest:darkslateblue)  dist:0.034
     45 #fde725 closest:darkslateblue)  dist:0.032
     46 #fde725 closest:darkslateblue)  dist:0.032
     47 #fde725 closest:darkslateblue)  dist:0.032
     48 #fde725 closest:darkslateblue)  dist:0.033
     49 #fde725 closest:darkslateblue)  dist:0.035
     50 #fde725 closest:darkslateblue)  dist:0.038
     51 #fde725 closest:darkslateblue)  dist:0.041
     52 #fde725 closest:darkslateblue)  dist:0.045
     53 #fde725 closest:darkslateblue)  dist:0.049
     54 #fde725 closest:darkslateblue)  dist:0.053
     55 #fde725 closest:darkslateblue)  dist:0.057
     56 #fde725 closest:darkslateblue)  dist:0.062
     57 #fde725 closest:darkslateblue)  dist:0.066
     58 #fde725 closest:darkslateblue)  dist:0.071
     59 #fde725 closest:darkslateblue)  dist:0.075
     60 #fde725 closest:darkslateblue)  dist:0.080
     61 #fde725 closest:darkslateblue)  dist:0.085
     62 #fde725 closest:darkslateblue)  dist:0.089
     63 #fde725 closest:darkslateblue)  dist:0.094
     64 #fde725 closest:darkslateblue)  dist:0.098
     65 #fde725 closest:darkslateblue)  dist:0.103
     66 #fde725 closest:darkslateblue)  dist:0.108
     67 #fde725 closest:darkslateblue)  dist:0.112
     68 #fde725 closest:darkslateblue)  dist:0.117
     69 #fde725 closest:darkslateblue)  dist:0.121
     70 #fde725 closest:darkslateblue)  dist:0.126
     71 #fde725 closest:darkslateblue)  dist:0.130
     72 #fde725 closest:darkslateblue)  dist:0.135
     73 #fde725 closest:darkslateblue)  dist:0.139
     74 #fde725 closest:darkslateblue)  dist:0.144
     75 #fde725 closest:darkslateblue)  dist:0.148
     76 #fde725 closest:darkslateblue)  dist:0.153
     77 #fde725 closest:darkslateblue)  dist:0.157
     78 #fde725 closest:darkslateblue)  dist:0.162
     79 #fde725 closest:darkslateblue)  dist:0.166
     80 #fde725 closest:darkslateblue)  dist:0.170
     81 #fde725 closest:darkslateblue)  dist:0.175
     82 #fde725 closest:darkslateblue)  dist:0.179
     83 #fde725 closest:darkslateblue)  dist:0.183
     84 #fde725 closest:darkslateblue)  dist:0.187
     85 #fde725 closest:darkslateblue)  dist:0.192
     86 #fde725 closest:darkslateblue)  dist:0.196
     87 #fde725 closest:steelblue)  dist:0.197
     88 #fde725 closest:steelblue)  dist:0.196
     89 #fde725 closest:steelblue)  dist:0.195
     90 #fde725 closest:steelblue)  dist:0.194
     91 #fde725 closest:steelblue)  dist:0.193
     92 #fde725 closest:steelblue)  dist:0.192
     93 #fde725 closest:steelblue)  dist:0.191
     94 #fde725 closest:steelblue)  dist:0.191
     95 #fde725 closest:steelblue)  dist:0.190
     96 #fde725 closest:teal)  dist:0.189
     97 #fde725 closest:teal)  dist:0.187
     98 #fde725 closest:teal)  dist:0.184
     99 #fde725 closest:teal)  dist:0.182
    100 #fde725 closest:teal)  dist:0.180
    101 #fde725 closest:teal)  dist:0.178
    102 #fde725 closest:teal)  dist:0.176
    103 #fde725 closest:teal)  dist:0.174
    104 #fde725 closest:teal)  dist:0.172
    105 #fde725 closest:teal)  dist:0.170
    106 #fde725 closest:teal)  dist:0.168
    107 #fde725 closest:darkcyan)  dist:0.166
    108 #fde725 closest:darkcyan)  dist:0.164
    109 #fde725 closest:darkcyan)  dist:0.161
    110 #fde725 closest:darkcyan)  dist:0.159
    111 #fde725 closest:darkcyan)  dist:0.156
    112 #fde725 closest:darkcyan)  dist:0.154
    113 #fde725 closest:darkcyan)  dist:0.152
    114 #fde725 closest:darkcyan)  dist:0.150
    115 #fde725 closest:darkcyan)  dist:0.148
    116 #fde725 closest:darkcyan)  dist:0.146
    117 #fde725 closest:darkcyan)  dist:0.144
    118 #fde725 closest:darkcyan)  dist:0.142
    119 #fde725 closest:darkcyan)  dist:0.140
    120 #fde725 closest:darkcyan)  dist:0.138
    121 #fde725 closest:darkcyan)  dist:0.137
    122 #fde725 closest:darkcyan)  dist:0.135
    123 #fde725 closest:darkcyan)  dist:0.134
    124 #fde725 closest:darkcyan)  dist:0.133
    125 #fde725 closest:darkcyan)  dist:0.132
    126 #fde725 closest:darkcyan)  dist:0.131
    127 #fde725 closest:darkcyan)  dist:0.130
    128 #fde725 closest:darkcyan)  dist:0.130
    129 #fde725 closest:darkcyan)  dist:0.129
    130 #fde725 closest:darkcyan)  dist:0.129
    131 #fde725 closest:darkcyan)  dist:0.129
    132 #fde725 closest:darkcyan)  dist:0.129
    133 #fde725 closest:darkcyan)  dist:0.129
    134 #fde725 closest:darkcyan)  dist:0.130
    135 #fde725 closest:darkcyan)  dist:0.130
    136 #fde725 closest:darkcyan)  dist:0.131
    137 #fde725 closest:darkcyan)  dist:0.132
    138 #fde725 closest:darkcyan)  dist:0.133
    139 #fde725 closest:darkcyan)  dist:0.135
    140 #fde725 closest:darkcyan)  dist:0.137
    141 #fde725 closest:darkcyan)  dist:0.139
    142 #fde725 closest:darkcyan)  dist:0.141
    143 #fde725 closest:darkcyan)  dist:0.143
    144 #fde725 closest:darkcyan)  dist:0.146
    145 #fde725 closest:darkcyan)  dist:0.148
    146 #fde725 closest:lightseagreen)  dist:0.151
    147 #fde725 closest:lightseagreen)  dist:0.151
    148 #fde725 closest:lightseagreen)  dist:0.151
    149 #fde725 closest:mediumseagreen)  dist:0.148
    150 #fde725 closest:mediumseagreen)  dist:0.145
    151 #fde725 closest:mediumseagreen)  dist:0.141
    152 #fde725 closest:mediumseagreen)  dist:0.137
    153 #fde725 closest:mediumseagreen)  dist:0.132
    154 #fde725 closest:mediumseagreen)  dist:0.128
    155 #fde725 closest:mediumseagreen)  dist:0.124
    156 #fde725 closest:mediumseagreen)  dist:0.119
    157 #fde725 closest:mediumseagreen)  dist:0.114
    158 #fde725 closest:mediumseagreen)  dist:0.109
    159 #fde725 closest:mediumseagreen)  dist:0.104
    160 #fde725 closest:mediumseagreen)  dist:0.099
    161 #fde725 closest:mediumseagreen)  dist:0.093
    162 #fde725 closest:mediumseagreen)  dist:0.088
    163 #fde725 closest:mediumseagreen)  dist:0.082
    164 #fde725 closest:mediumseagreen)  dist:0.077
    165 #fde725 closest:mediumseagreen)  dist:0.071
    166 #fde725 closest:mediumseagreen)  dist:0.065
    167 #fde725 closest:mediumseagreen)  dist:0.059
    168 #fde725 closest:mediumseagreen)  dist:0.054
    169 #fde725 closest:mediumseagreen)  dist:0.049
    170 #fde725 closest:mediumseagreen)  dist:0.044
    171 #fde725 closest:mediumseagreen)  dist:0.039
    172 #fde725 closest:mediumseagreen)  dist:0.036
    173 #fde725 closest:mediumseagreen)  dist:0.035
    174 #fde725 closest:mediumseagreen)  dist:0.034
    175 #fde725 closest:mediumseagreen)  dist:0.036
    176 #fde725 closest:mediumseagreen)  dist:0.040
    177 #fde725 closest:mediumseagreen)  dist:0.044
    178 #fde725 closest:mediumseagreen)  dist:0.050
    179 #fde725 closest:mediumseagreen)  dist:0.057
    180 #fde725 closest:mediumseagreen)  dist:0.064
    181 #fde725 closest:mediumseagreen)  dist:0.071
    182 #fde725 closest:mediumseagreen)  dist:0.079
    183 #fde725 closest:mediumseagreen)  dist:0.087
    184 #fde725 closest:mediumseagreen)  dist:0.096
    185 #fde725 closest:mediumseagreen)  dist:0.105
    186 #fde725 closest:mediumseagreen)  dist:0.114
    187 #fde725 closest:mediumseagreen)  dist:0.123
    188 #fde725 closest:mediumseagreen)  dist:0.132
    189 #fde725 closest:mediumseagreen)  dist:0.141
    190 #fde725 closest:mediumseagreen)  dist:0.151
    191 #fde725 closest:mediumseagreen)  dist:0.161
    192 #fde725 closest:mediumseagreen)  dist:0.171
    193 #fde725 closest:mediumseagreen)  dist:0.181
    194 #fde725 closest:mediumseagreen)  dist:0.191
    195 #fde725 closest:mediumseagreen)  dist:0.201
    196 #fde725 closest:mediumseagreen)  dist:0.211
    197 #fde725 closest:mediumseagreen)  dist:0.222
    198 #fde725 closest:mediumseagreen)  dist:0.232
    199 #fde725 closest:yellowgreen)  dist:0.229
    200 #fde725 closest:yellowgreen)  dist:0.219
    201 #fde725 closest:yellowgreen)  dist:0.208
    202 #fde725 closest:yellowgreen)  dist:0.198
    203 #fde725 closest:yellowgreen)  dist:0.187
    204 #fde725 closest:yellowgreen)  dist:0.177
    205 #fde725 closest:yellowgreen)  dist:0.166
    206 #fde725 closest:yellowgreen)  dist:0.156
    207 #fde725 closest:yellowgreen)  dist:0.145
    208 #fde725 closest:yellowgreen)  dist:0.135
    209 #fde725 closest:yellowgreen)  dist:0.124
    210 #fde725 closest:yellowgreen)  dist:0.114
    211 #fde725 closest:yellowgreen)  dist:0.104
    212 #fde725 closest:yellowgreen)  dist:0.095
    213 #fde725 closest:yellowgreen)  dist:0.086
    214 #fde725 closest:yellowgreen)  dist:0.078
    215 #fde725 closest:yellowgreen)  dist:0.071
    216 #fde725 closest:yellowgreen)  dist:0.066
    217 #fde725 closest:yellowgreen)  dist:0.062
    218 #fde725 closest:yellowgreen)  dist:0.061
    219 #fde725 closest:yellowgreen)  dist:0.062
    220 #fde725 closest:yellowgreen)  dist:0.065
    221 #fde725 closest:yellowgreen)  dist:0.071
    222 #fde725 closest:yellowgreen)  dist:0.078
    223 #fde725 closest:yellowgreen)  dist:0.087
    224 #fde725 closest:yellowgreen)  dist:0.096
    225 #fde725 closest:yellowgreen)  dist:0.106
    226 #fde725 closest:yellowgreen)  dist:0.116
    227 #fde725 closest:yellowgreen)  dist:0.127
    228 #fde725 closest:greenyellow)  dist:0.138
    229 #fde725 closest:greenyellow)  dist:0.141
    230 #fde725 closest:greenyellow)  dist:0.146
    231 #fde725 closest:greenyellow)  dist:0.151
    232 #fde725 closest:greenyellow)  dist:0.157
    233 #fde725 closest:greenyellow)  dist:0.163
    234 #fde725 closest:greenyellow)  dist:0.170
    235 #fde725 closest:greenyellow)  dist:0.178
    236 #fde725 closest:greenyellow)  dist:0.186
    237 #fde725 closest:greenyellow)  dist:0.194
    238 #fde725 closest:greenyellow)  dist:0.202
    239 #fde725 closest:gold)  dist:0.199
    240 #fde725 closest:gold)  dist:0.189
    241 #fde725 closest:gold)  dist:0.180
    242 #fde725 closest:gold)  dist:0.171
    243 #fde725 closest:gold)  dist:0.163
    244 #fde725 closest:gold)  dist:0.156
    245 #fde725 closest:gold)  dist:0.150
    246 #fde725 closest:gold)  dist:0.145
    247 #fde725 closest:gold)  dist:0.141
    248 #fde725 closest:gold)  dist:0.139
    249 #fde725 closest:gold)  dist:0.137
    250 #fde725 closest:gold)  dist:0.137
    251 #fde725 closest:gold)  dist:0.139
    252 #fde725 closest:gold)  dist:0.142
    253 #fde725 closest:gold)  dist:0.146
    254 #fde725 closest:gold)  dist:0.151
    255 #fde725 closest:gold)  dist:0.157
    

    Here is some code to create a LinearSegmentedColormap from 12 colors close to viridis. The first example uses the closest named colors, the second uses the hexadecimal form of the exact colors. Both are just an approximation, but one can notice that the named colors differ a lot (especially because the 12 closest colors aren't unique).

    import matplotlib.pyplot as plt
    from matplotlib.colors import to_hex, to_rgb, CSS4_COLORS, LinearSegmentedColormap, ListedColormap
    from matplotlib.cm import ScalarMappable
    
    def find_closest_name(col):
        rv, gv, bv = to_rgb(col)
        min_colors = {}
        for col in CSS4_COLORS:
            rc, gc, bc = to_rgb(col)
            min_colors[(rc - rv) ** 2 + (gc - gv) ** 2 + (bc - bv) ** 2] = col
        closest = min(min_colors.keys())
        return min_colors[closest], np.sqrt(closest)
    
    vals = np.linspace(0, 1, 12)
    [(val, to_hex(viridis(val))) for val in vals]
    
    semi_viridis_colors = [find_closest_name(viridis(val))[0] for val in vals]
    # ['indigo', 'darkslateblue', 'darkslateblue', 'darkslateblue', 'steelblue', 'darkcyan', 'darkcyan', 'mediumseagreen', 'mediumseagreen', 'yellowgreen', 'greenyellow', 'gold']
    semi_viridis = LinearSegmentedColormap.from_list('semi_viridis',
                                                     [(val, col) for val, col in zip(vals, semi_viridis_colors)])
    semi_viridis_hex_colors = [to_hex(viridis(val)) for val in vals]
    # ['#440154', '#482173', '#433e85', '#38588c', '#2d708e', '#25858e', '#1e9b8a', '#2ab07f', '#52c569', '#86d549', '#c2df23', '#fde725']
    semi_viridis_hex = LinearSegmentedColormap.from_list('semi_viridis_hex',
                                                         [(val, col) for val, col in zip(vals, semi_viridis_hex_colors)])
    
    fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 5))
    plt.colorbar(ScalarMappable(cmap=viridis), label='viridis', orientation='horizontal', cax=ax1)
    plt.colorbar(ScalarMappable(cmap=semi_viridis), label='semi viridis', orientation='horizontal', cax=ax2)
    plt.colorbar(ScalarMappable(cmap=semi_viridis_hex), label='semi viridis hex', orientation='horizontal', cax=ax3)
    plt.tight_layout()
    plt.show()
    

    comparing colormaps