I want to get english names of colors from a colormaps object. So far I read that you can get numeric values of colors. For example -
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
viridis = cm.get_cmap('viridis', 12)
print(viridis)
print(viridis(0.56))
OUTPUTS
<matplotlib.colors.ListedColormap object at 0x7fb112c73ba8>
(0.119512, 0.607464, 0.540218, 1.0)
It is also clear that LineSegColor is a tuple that matches a string and a dict containing a hash between strings and matrices. Matrices are representing a gradient in some n*m space for the expression of particular color.
cdict1 = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
blue_red1 = LinearSegmentedColormap('BlueRed1', cdict1)
How to reverse engineer the creation of color to Virdis?
Here are few links I visited -
Viridis wasn't created as a LinearSegmentedColormap
. It is a carefully constructed list of 256 rgb values. You could create such a colormap via
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
viridis = plt.get_cmap('viridis')
new_viridis = ListedColormap(viridis(np.arange(256)))
None of the 256 individual colors corresponds to a named color (at least not in the 148 long CSS4 list). Here is some code to create a list of close colors (the principal code comes from Convert RGB color to English color name, like 'green'):
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex, to_rgb
import numpy as np
def find_closest_name(col):
rv, gv, bv = to_rgb(col)
min_colors = {}
for col in CSS4_COLORS:
rc, gc, bc = to_rgb(col)
min_colors[(rc - rv) ** 2 + (gc - gv) ** 2 + (bc - bv) ** 2] = col
closest = min(min_colors.keys())
return min_colors[closest], np.sqrt(closest)
viridis = plt.get_cmap('viridis')
for i in range(256):
closest_name, dist = find_closest_name(viridis(i))
print(f'{i:3d} {to_hex((rv, gv, bv))} closest:{closest_name}) dist:{dist:.3f}')
Which gives the following list:
0 #fde725 closest:indigo) dist:0.182
1 #fde725 closest:indigo) dist:0.177
2 #fde725 closest:indigo) dist:0.171
3 #fde725 closest:indigo) dist:0.165
4 #fde725 closest:indigo) dist:0.160
5 #fde725 closest:indigo) dist:0.156
6 #fde725 closest:indigo) dist:0.151
7 #fde725 closest:indigo) dist:0.148
8 #fde725 closest:indigo) dist:0.144
9 #fde725 closest:indigo) dist:0.141
10 #fde725 closest:indigo) dist:0.139
11 #fde725 closest:indigo) dist:0.137
12 #fde725 closest:indigo) dist:0.135
13 #fde725 closest:indigo) dist:0.134
14 #fde725 closest:indigo) dist:0.133
15 #fde725 closest:indigo) dist:0.133
16 #fde725 closest:indigo) dist:0.133
17 #fde725 closest:indigo) dist:0.134
18 #fde725 closest:indigo) dist:0.135
19 #fde725 closest:indigo) dist:0.136
20 #fde725 closest:indigo) dist:0.138
21 #fde725 closest:indigo) dist:0.140
22 #fde725 closest:indigo) dist:0.142
23 #fde725 closest:darkslateblue) dist:0.145
24 #fde725 closest:darkslateblue) dist:0.138
25 #fde725 closest:darkslateblue) dist:0.132
26 #fde725 closest:darkslateblue) dist:0.125
27 #fde725 closest:darkslateblue) dist:0.119
28 #fde725 closest:darkslateblue) dist:0.113
29 #fde725 closest:darkslateblue) dist:0.107
30 #fde725 closest:darkslateblue) dist:0.101
31 #fde725 closest:darkslateblue) dist:0.095
32 #fde725 closest:darkslateblue) dist:0.089
33 #fde725 closest:darkslateblue) dist:0.083
34 #fde725 closest:darkslateblue) dist:0.077
35 #fde725 closest:darkslateblue) dist:0.072
36 #fde725 closest:darkslateblue) dist:0.067
37 #fde725 closest:darkslateblue) dist:0.061
38 #fde725 closest:darkslateblue) dist:0.056
39 #fde725 closest:darkslateblue) dist:0.052
40 #fde725 closest:darkslateblue) dist:0.047
41 #fde725 closest:darkslateblue) dist:0.043
42 #fde725 closest:darkslateblue) dist:0.039
43 #fde725 closest:darkslateblue) dist:0.036
44 #fde725 closest:darkslateblue) dist:0.034
45 #fde725 closest:darkslateblue) dist:0.032
46 #fde725 closest:darkslateblue) dist:0.032
47 #fde725 closest:darkslateblue) dist:0.032
48 #fde725 closest:darkslateblue) dist:0.033
49 #fde725 closest:darkslateblue) dist:0.035
50 #fde725 closest:darkslateblue) dist:0.038
51 #fde725 closest:darkslateblue) dist:0.041
52 #fde725 closest:darkslateblue) dist:0.045
53 #fde725 closest:darkslateblue) dist:0.049
54 #fde725 closest:darkslateblue) dist:0.053
55 #fde725 closest:darkslateblue) dist:0.057
56 #fde725 closest:darkslateblue) dist:0.062
57 #fde725 closest:darkslateblue) dist:0.066
58 #fde725 closest:darkslateblue) dist:0.071
59 #fde725 closest:darkslateblue) dist:0.075
60 #fde725 closest:darkslateblue) dist:0.080
61 #fde725 closest:darkslateblue) dist:0.085
62 #fde725 closest:darkslateblue) dist:0.089
63 #fde725 closest:darkslateblue) dist:0.094
64 #fde725 closest:darkslateblue) dist:0.098
65 #fde725 closest:darkslateblue) dist:0.103
66 #fde725 closest:darkslateblue) dist:0.108
67 #fde725 closest:darkslateblue) dist:0.112
68 #fde725 closest:darkslateblue) dist:0.117
69 #fde725 closest:darkslateblue) dist:0.121
70 #fde725 closest:darkslateblue) dist:0.126
71 #fde725 closest:darkslateblue) dist:0.130
72 #fde725 closest:darkslateblue) dist:0.135
73 #fde725 closest:darkslateblue) dist:0.139
74 #fde725 closest:darkslateblue) dist:0.144
75 #fde725 closest:darkslateblue) dist:0.148
76 #fde725 closest:darkslateblue) dist:0.153
77 #fde725 closest:darkslateblue) dist:0.157
78 #fde725 closest:darkslateblue) dist:0.162
79 #fde725 closest:darkslateblue) dist:0.166
80 #fde725 closest:darkslateblue) dist:0.170
81 #fde725 closest:darkslateblue) dist:0.175
82 #fde725 closest:darkslateblue) dist:0.179
83 #fde725 closest:darkslateblue) dist:0.183
84 #fde725 closest:darkslateblue) dist:0.187
85 #fde725 closest:darkslateblue) dist:0.192
86 #fde725 closest:darkslateblue) dist:0.196
87 #fde725 closest:steelblue) dist:0.197
88 #fde725 closest:steelblue) dist:0.196
89 #fde725 closest:steelblue) dist:0.195
90 #fde725 closest:steelblue) dist:0.194
91 #fde725 closest:steelblue) dist:0.193
92 #fde725 closest:steelblue) dist:0.192
93 #fde725 closest:steelblue) dist:0.191
94 #fde725 closest:steelblue) dist:0.191
95 #fde725 closest:steelblue) dist:0.190
96 #fde725 closest:teal) dist:0.189
97 #fde725 closest:teal) dist:0.187
98 #fde725 closest:teal) dist:0.184
99 #fde725 closest:teal) dist:0.182
100 #fde725 closest:teal) dist:0.180
101 #fde725 closest:teal) dist:0.178
102 #fde725 closest:teal) dist:0.176
103 #fde725 closest:teal) dist:0.174
104 #fde725 closest:teal) dist:0.172
105 #fde725 closest:teal) dist:0.170
106 #fde725 closest:teal) dist:0.168
107 #fde725 closest:darkcyan) dist:0.166
108 #fde725 closest:darkcyan) dist:0.164
109 #fde725 closest:darkcyan) dist:0.161
110 #fde725 closest:darkcyan) dist:0.159
111 #fde725 closest:darkcyan) dist:0.156
112 #fde725 closest:darkcyan) dist:0.154
113 #fde725 closest:darkcyan) dist:0.152
114 #fde725 closest:darkcyan) dist:0.150
115 #fde725 closest:darkcyan) dist:0.148
116 #fde725 closest:darkcyan) dist:0.146
117 #fde725 closest:darkcyan) dist:0.144
118 #fde725 closest:darkcyan) dist:0.142
119 #fde725 closest:darkcyan) dist:0.140
120 #fde725 closest:darkcyan) dist:0.138
121 #fde725 closest:darkcyan) dist:0.137
122 #fde725 closest:darkcyan) dist:0.135
123 #fde725 closest:darkcyan) dist:0.134
124 #fde725 closest:darkcyan) dist:0.133
125 #fde725 closest:darkcyan) dist:0.132
126 #fde725 closest:darkcyan) dist:0.131
127 #fde725 closest:darkcyan) dist:0.130
128 #fde725 closest:darkcyan) dist:0.130
129 #fde725 closest:darkcyan) dist:0.129
130 #fde725 closest:darkcyan) dist:0.129
131 #fde725 closest:darkcyan) dist:0.129
132 #fde725 closest:darkcyan) dist:0.129
133 #fde725 closest:darkcyan) dist:0.129
134 #fde725 closest:darkcyan) dist:0.130
135 #fde725 closest:darkcyan) dist:0.130
136 #fde725 closest:darkcyan) dist:0.131
137 #fde725 closest:darkcyan) dist:0.132
138 #fde725 closest:darkcyan) dist:0.133
139 #fde725 closest:darkcyan) dist:0.135
140 #fde725 closest:darkcyan) dist:0.137
141 #fde725 closest:darkcyan) dist:0.139
142 #fde725 closest:darkcyan) dist:0.141
143 #fde725 closest:darkcyan) dist:0.143
144 #fde725 closest:darkcyan) dist:0.146
145 #fde725 closest:darkcyan) dist:0.148
146 #fde725 closest:lightseagreen) dist:0.151
147 #fde725 closest:lightseagreen) dist:0.151
148 #fde725 closest:lightseagreen) dist:0.151
149 #fde725 closest:mediumseagreen) dist:0.148
150 #fde725 closest:mediumseagreen) dist:0.145
151 #fde725 closest:mediumseagreen) dist:0.141
152 #fde725 closest:mediumseagreen) dist:0.137
153 #fde725 closest:mediumseagreen) dist:0.132
154 #fde725 closest:mediumseagreen) dist:0.128
155 #fde725 closest:mediumseagreen) dist:0.124
156 #fde725 closest:mediumseagreen) dist:0.119
157 #fde725 closest:mediumseagreen) dist:0.114
158 #fde725 closest:mediumseagreen) dist:0.109
159 #fde725 closest:mediumseagreen) dist:0.104
160 #fde725 closest:mediumseagreen) dist:0.099
161 #fde725 closest:mediumseagreen) dist:0.093
162 #fde725 closest:mediumseagreen) dist:0.088
163 #fde725 closest:mediumseagreen) dist:0.082
164 #fde725 closest:mediumseagreen) dist:0.077
165 #fde725 closest:mediumseagreen) dist:0.071
166 #fde725 closest:mediumseagreen) dist:0.065
167 #fde725 closest:mediumseagreen) dist:0.059
168 #fde725 closest:mediumseagreen) dist:0.054
169 #fde725 closest:mediumseagreen) dist:0.049
170 #fde725 closest:mediumseagreen) dist:0.044
171 #fde725 closest:mediumseagreen) dist:0.039
172 #fde725 closest:mediumseagreen) dist:0.036
173 #fde725 closest:mediumseagreen) dist:0.035
174 #fde725 closest:mediumseagreen) dist:0.034
175 #fde725 closest:mediumseagreen) dist:0.036
176 #fde725 closest:mediumseagreen) dist:0.040
177 #fde725 closest:mediumseagreen) dist:0.044
178 #fde725 closest:mediumseagreen) dist:0.050
179 #fde725 closest:mediumseagreen) dist:0.057
180 #fde725 closest:mediumseagreen) dist:0.064
181 #fde725 closest:mediumseagreen) dist:0.071
182 #fde725 closest:mediumseagreen) dist:0.079
183 #fde725 closest:mediumseagreen) dist:0.087
184 #fde725 closest:mediumseagreen) dist:0.096
185 #fde725 closest:mediumseagreen) dist:0.105
186 #fde725 closest:mediumseagreen) dist:0.114
187 #fde725 closest:mediumseagreen) dist:0.123
188 #fde725 closest:mediumseagreen) dist:0.132
189 #fde725 closest:mediumseagreen) dist:0.141
190 #fde725 closest:mediumseagreen) dist:0.151
191 #fde725 closest:mediumseagreen) dist:0.161
192 #fde725 closest:mediumseagreen) dist:0.171
193 #fde725 closest:mediumseagreen) dist:0.181
194 #fde725 closest:mediumseagreen) dist:0.191
195 #fde725 closest:mediumseagreen) dist:0.201
196 #fde725 closest:mediumseagreen) dist:0.211
197 #fde725 closest:mediumseagreen) dist:0.222
198 #fde725 closest:mediumseagreen) dist:0.232
199 #fde725 closest:yellowgreen) dist:0.229
200 #fde725 closest:yellowgreen) dist:0.219
201 #fde725 closest:yellowgreen) dist:0.208
202 #fde725 closest:yellowgreen) dist:0.198
203 #fde725 closest:yellowgreen) dist:0.187
204 #fde725 closest:yellowgreen) dist:0.177
205 #fde725 closest:yellowgreen) dist:0.166
206 #fde725 closest:yellowgreen) dist:0.156
207 #fde725 closest:yellowgreen) dist:0.145
208 #fde725 closest:yellowgreen) dist:0.135
209 #fde725 closest:yellowgreen) dist:0.124
210 #fde725 closest:yellowgreen) dist:0.114
211 #fde725 closest:yellowgreen) dist:0.104
212 #fde725 closest:yellowgreen) dist:0.095
213 #fde725 closest:yellowgreen) dist:0.086
214 #fde725 closest:yellowgreen) dist:0.078
215 #fde725 closest:yellowgreen) dist:0.071
216 #fde725 closest:yellowgreen) dist:0.066
217 #fde725 closest:yellowgreen) dist:0.062
218 #fde725 closest:yellowgreen) dist:0.061
219 #fde725 closest:yellowgreen) dist:0.062
220 #fde725 closest:yellowgreen) dist:0.065
221 #fde725 closest:yellowgreen) dist:0.071
222 #fde725 closest:yellowgreen) dist:0.078
223 #fde725 closest:yellowgreen) dist:0.087
224 #fde725 closest:yellowgreen) dist:0.096
225 #fde725 closest:yellowgreen) dist:0.106
226 #fde725 closest:yellowgreen) dist:0.116
227 #fde725 closest:yellowgreen) dist:0.127
228 #fde725 closest:greenyellow) dist:0.138
229 #fde725 closest:greenyellow) dist:0.141
230 #fde725 closest:greenyellow) dist:0.146
231 #fde725 closest:greenyellow) dist:0.151
232 #fde725 closest:greenyellow) dist:0.157
233 #fde725 closest:greenyellow) dist:0.163
234 #fde725 closest:greenyellow) dist:0.170
235 #fde725 closest:greenyellow) dist:0.178
236 #fde725 closest:greenyellow) dist:0.186
237 #fde725 closest:greenyellow) dist:0.194
238 #fde725 closest:greenyellow) dist:0.202
239 #fde725 closest:gold) dist:0.199
240 #fde725 closest:gold) dist:0.189
241 #fde725 closest:gold) dist:0.180
242 #fde725 closest:gold) dist:0.171
243 #fde725 closest:gold) dist:0.163
244 #fde725 closest:gold) dist:0.156
245 #fde725 closest:gold) dist:0.150
246 #fde725 closest:gold) dist:0.145
247 #fde725 closest:gold) dist:0.141
248 #fde725 closest:gold) dist:0.139
249 #fde725 closest:gold) dist:0.137
250 #fde725 closest:gold) dist:0.137
251 #fde725 closest:gold) dist:0.139
252 #fde725 closest:gold) dist:0.142
253 #fde725 closest:gold) dist:0.146
254 #fde725 closest:gold) dist:0.151
255 #fde725 closest:gold) dist:0.157
Here is some code to create a LinearSegmentedColormap
from 12 colors close to viridis. The first example uses the closest named colors, the second uses the hexadecimal form of the exact colors. Both are just an approximation, but one can notice that the named colors differ a lot (especially because the 12 closest colors aren't unique).
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex, to_rgb, CSS4_COLORS, LinearSegmentedColormap, ListedColormap
from matplotlib.cm import ScalarMappable
def find_closest_name(col):
rv, gv, bv = to_rgb(col)
min_colors = {}
for col in CSS4_COLORS:
rc, gc, bc = to_rgb(col)
min_colors[(rc - rv) ** 2 + (gc - gv) ** 2 + (bc - bv) ** 2] = col
closest = min(min_colors.keys())
return min_colors[closest], np.sqrt(closest)
vals = np.linspace(0, 1, 12)
[(val, to_hex(viridis(val))) for val in vals]
semi_viridis_colors = [find_closest_name(viridis(val))[0] for val in vals]
# ['indigo', 'darkslateblue', 'darkslateblue', 'darkslateblue', 'steelblue', 'darkcyan', 'darkcyan', 'mediumseagreen', 'mediumseagreen', 'yellowgreen', 'greenyellow', 'gold']
semi_viridis = LinearSegmentedColormap.from_list('semi_viridis',
[(val, col) for val, col in zip(vals, semi_viridis_colors)])
semi_viridis_hex_colors = [to_hex(viridis(val)) for val in vals]
# ['#440154', '#482173', '#433e85', '#38588c', '#2d708e', '#25858e', '#1e9b8a', '#2ab07f', '#52c569', '#86d549', '#c2df23', '#fde725']
semi_viridis_hex = LinearSegmentedColormap.from_list('semi_viridis_hex',
[(val, col) for val, col in zip(vals, semi_viridis_hex_colors)])
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 5))
plt.colorbar(ScalarMappable(cmap=viridis), label='viridis', orientation='horizontal', cax=ax1)
plt.colorbar(ScalarMappable(cmap=semi_viridis), label='semi viridis', orientation='horizontal', cax=ax2)
plt.colorbar(ScalarMappable(cmap=semi_viridis_hex), label='semi viridis hex', orientation='horizontal', cax=ax3)
plt.tight_layout()
plt.show()