pythonpython-3.xmachine-learningxgboostshap

How to get SHAP values for each class on a multiclass classification problem in Python


I have the following dataframe:

import pandas as pd
import random

import xgboost
import shap

foo = pd.DataFrame({'id':[1,2,3,4,5,6,7,8,9,10],
                   'var1':random.sample(range(1, 100), 10),
                   'var2':random.sample(range(1, 100), 10),
                   'var3':random.sample(range(1, 100), 10),
                   'class': ['a','a','a','a','a','b','b','c','c','c']})

I want to run a classification algorithm to predict the 3 classes.

So I split my dataset into a training and testing set and I ran an xgboost classification

cl_cols = foo.filter(regex='var').columns
X_train, X_test, y_train, y_test = train_test_split(foo[cl_cols],
                                                        foo[['class']],
                                                        test_size=0.33, random_state=42)


model = xgboost.XGBClassifier(objective="binary:logistic")
model.fit(X_train, y_train)

Now I would like to get the mean SHAP values for each class, instead of the mean from the absolute SHAP values generated from this code:

shap_values = shap.TreeExplainer(model).shap_values(X_test)
shap.summary_plot(shap_values, X_test)

enter image description here

Also, the plot labels the class as 0,1,2. How can I know to which class the 0,1 & 2 from the original correspond?

Because this code:

shap.summary_plot(shap_values, X_test,
                 class_names= ['a', 'b', 'c'])

gives

enter image description here

and this code:

shap.summary_plot(shap_values, X_test,
                 class_names= ['b', 'c', 'a'])

gives

enter image description here

So I am not sure about the legend anymore. Any ideas?


Solution

  • By doing some research and with the help of this post and @Alessandro Nesti 's answer, here is my solution:

    foo = pd.DataFrame({'id':[1,2,3,4,5,6,7,8,9,10],
                       'var1':random.sample(range(1, 100), 10),
                       'var2':random.sample(range(1, 100), 10),
                       'var3':random.sample(range(1, 100), 10),
                       'class': ['a','a','a','a','a','b','b','c','c','c']})
    
    cl_cols = foo.filter(regex='var').columns
    X_train, X_test, y_train, y_test = train_test_split(foo[cl_cols],
                                                            foo[['class']],
                                                            test_size=0.33, random_state=42)
    
    
    model = xgboost.XGBClassifier(objective="multi:softmax")
    model.fit(X_train, y_train)
    
    def get_ABS_SHAP(df_shap,df):
        #import matplotlib as plt
        # Make a copy of the input data
        shap_v = pd.DataFrame(df_shap)
        feature_list = df.columns
        shap_v.columns = feature_list
        df_v = df.copy().reset_index().drop('index',axis=1)
        
        # Determine the correlation in order to plot with different colors
        corr_list = list()
        for i in feature_list:
            b = np.corrcoef(shap_v[i],df_v[i])[1][0]
            corr_list.append(b)
        corr_df = pd.concat([pd.Series(feature_list),pd.Series(corr_list)],axis=1).fillna(0)
     
        # Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient
        corr_df.columns  = ['Variable','Corr']
        corr_df['Sign'] = np.where(corr_df['Corr']>0,'red','blue')
        
        shap_abs = np.abs(shap_v)
        k=pd.DataFrame(shap_abs.mean()).reset_index()
        k.columns = ['Variable','SHAP_abs']
        k2 = k.merge(corr_df,left_on = 'Variable',right_on='Variable',how='inner')
        k2 = k2.sort_values(by='SHAP_abs',ascending = True)
        
        k2_f = k2[['Variable', 'SHAP_abs', 'Corr']]
        k2_f['SHAP_abs'] = k2_f['SHAP_abs'] * np.sign(k2_f['Corr'])
        k2_f.drop(columns='Corr', inplace=True)
        k2_f.rename(columns={'SHAP_abs': 'SHAP'}, inplace=True)
        
        return k2_f
    
    foo_all = pd.DataFrame()
    
    for k,v in list(enumerate(model.classes_)):
    
        foo = get_ABS_SHAP(shap_values[k], X_test)
        foo['class'] = v
        foo_all = pd.concat([foo_all,foo])
    
    import plotly_express as px
    px.bar(foo_all,x='SHAP', y='Variable', color='class')
    

    which results in enter image description here