I am trying to read and decode tiff images in tensorflow. I am using tensrflow_io package as follows, I am getting this error that I cant figure out.
import tensorflow as tf
import tensorflow_io as tfio
import os
def process_image(image):
image = tf.io.read_file(image)
image = tfio.experimental.image.decode_tiff(image)
image = tfio.experimental.color.rgba_to_rgb(image)
return image
path = os.path.join(os.curdir, '*.TIF')
files = tf.data.Dataset.list_files(path)
Output:
for file in files.take(5):
print(file)
tf.Tensor(b'./SIMCEPImages_A01_C1_F1_s10_w1.TIF', shape=(), dtype=string)
tf.Tensor(b'./SIMCEPImages_A01_C1_F1_s04_w1.TIF', shape=(), dtype=string)
tf.Tensor(b'./SIMCEPImages_A01_C1_F1_s12_w1.TIF', shape=(), dtype=string)
tf.Tensor(b'./SIMCEPImages_A01_C1_F1_s04_w2.TIF', shape=(), dtype=string)
tf.Tensor(b'./SIMCEPImages_A01_C1_F1_s11_w1.TIF', shape=(), dtype=string)
Now if I call:
dataset = files.map(process_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
for img in dataset.take(5):
print(img.shape)
ValueError: in user code:
File "<ipython-input-4-1d2deab36c6d>", line 5, in process_image *
image = tfio.experimental.color.rgba_to_rgb(image)
File "/usr/local/lib/python3.7/dist-packages/tensorflow_io/python/experimental/color_ops.py", line 80, in rgba_to_rgb *
rgba = tf.unstack(input, axis=-1)
ValueError: Cannot infer argument `num` from shape (None, None, None)
The problem is that tfio.experimental.color.rgba_to_rgb
uses unstack
under the hood, which cannot work in graph mode. One solution would be to manually index the channels you want according to the source code for rgba_to_rgb
. Here is a working example:
import numpy as np
from PIL import Image
import tensorflow as tf
import tensorflow_io as tfio
import os
# Create dummy data
data = np.random.randint(0, 255, (10,10)).astype(np.uint8)
im = Image.fromarray(data)
im.save('image1.tif')
im.save('image2.tif')
def process_image(image):
image = tf.io.read_file(image)
image = tfio.experimental.image.decode_tiff(image)
r, g, b = image[:, :, 0], image[:, :, 1], image[:, :, 2]
return tf.stack([r, g, b], axis=-1)
path = os.path.join(os.curdir, '*.tif')
files = tf.data.Dataset.list_files(path)
for file in files.take(5):
print(file)
dataset = files.map(process_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
for img in dataset.take(5):
print(img.shape)
tf.Tensor(b'./image2.tif', shape=(), dtype=string)
tf.Tensor(b'./image1.tif', shape=(), dtype=string)
(10, 10, 3)
(10, 10, 3)
If you really want to use tfio.experimental.color.rgba_to_rgb
, it will have be out of graph mode, using for example tf.py_function
.