pythonnumpyperformancefizzbuzz

Accelerating FizzBuzz with numpy


The FizzBuzz problem: Given a natural number N >= 0 print a sequence of numbers 0 - N replacing every number that is divisible by 3 with the word fizz, every number that is divisible by 5 with the word buzz, and every number divisible by both 3 and 5 with the word fizzbuzz.

Timings of various implementations

Numpy isn't excellent for this (it doesn't offer much acceleration for strings), but I figured it shouldn't be too horrible and, perhaps, it can beat plain python if used wisely. To my surprise, however, the opposite is the case for a naive implementation. Why is this, and how does one improve upon this?


Here is the code that I used to generate the timings. It includes a pure-python reference implementation, a naive numpy implementation, and a numba.jit variant, because I think it can act as a reasonable lower bound on performance.

import numpy as np
import matplotlib.pyplot as plt
import numba as nb
import timeit


def classic_fizzbuzz(N: int) -> str:
    result = list()

    for idx in range(N):
        if idx % 3 == 0 and idx % 5 == 0:
            result.append("fizzbuzz")
        elif idx % 5 == 0:
            result.append("buzz")
        elif idx % 3 == 0:
            result.append("fizz")
        else:
            result.append(str(idx))

    return " ".join(result)


def numpy_fizzbuzz(N: int) -> str:
    integers = np.arange(N)
    result = np.arange(N).astype(str)
    result = np.where(integers % 3 == 0, "fizz", result)
    result = np.where(integers % 5 == 0, "buzz", result)
    result = np.where(integers % 15 == 0, "fizzbuzz", result)

    return " ".join(result)


@nb.jit(nopython=True)
def numba_fizzbuzz(N:int) -> str:
    result = list()

    for idx in range(N):
        if idx % 3 == 0 and idx % 5 == 0:
            result.append("fizzbuzz")
        elif idx % 5 == 0:
            result.append("buzz")
        elif idx % 3 == 0:
            result.append("fizz")
        else:
            result.append(str(idx))

    return " ".join(result)

# do not measure initial compile time
numba_fizzbuzz(20)

def time_fizzbuzz(fn):
    repeats = 100
    times = list()
    N_values = np.linspace(0, int(1e4), 100, dtype=int)
    for idx in N_values:
        N = int(idx)
        times.append(timeit.timeit(lambda: fn(N), number=repeats) / repeats)
    
    return N_values, times

fig, ax = plt.subplots(dpi=150)  # web-quality

contendants = {
    "classic": classic_fizzbuzz,
    "numpy": numpy_fizzbuzz,
    "numba": numba_fizzbuzz
}

for fn in contendants.values():
    ax.plot(*time_fizzbuzz(fn))

ax.set_ylabel("Average Time (s)")
ax.set_label("Input")
fig.suptitle(
    "Comparison of FizzBuzz implementations in Python.",
    # fontsize="medium",
)
ax.set_title("Timings for various input N (averaged over 100 runs each)", fontsize="small")

ax.legend(
    contendants.keys(),
    loc="center left",
    bbox_to_anchor=(1, 0.5),
    title="Contestants",
)

fig.tight_layout()

fig.savefig("timings.png")

Solution

  • You can substantially improve the numpy version by using np.select rather than create a parallel array of strings:

    def numpy_select(N: int) -> str:
        integers = np.arange(N)
        return ' '.join(np.select([(integers%3 == 0) & (integers%5 == 0), 
                          (integers%3 == 0), (integers%5 == 0)], 
                          ['fizzbuzz','fizz','buzz'], integers).tolist())
    

    Your Classic Python version can be made a little faster like so:

    def c2(N: int) -> str:
        return ' '.join(['fizzbuzz' if x%15==0 else 
                         'fizz' if x%3==0 else 
                         'buzz' if x%5==0 else str(x) for x in range(N)])
    

    Plugging those into your benchmark:

    enter image description here