How to inspect the data loaded into TFX CsvExampleGen?
Top 3 rows from the california_housing_train.csv looks below.
longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value |
---|---|---|---|---|---|---|---|---|
-122.05 | 37.37 | 27 | 3885 | 661 | 1537 | 606 | 6.6085 | 344700 |
-118.3 | 34.26 | 43 | 1510 | 310 | 809 | 277 | 3.599 | 176500 |
-117.81 | 33.78 | 27 | 3589 | 507 | 1484 | 495 | 5.7934 | 270500 |
The CSV is loaded into CsvExampleGen. In my understanding, XXXExampleGen is to generate tf.Record instances, hence I wonder if there is a way to iterate through the records from CsvExampleGen.
from tfx.components import (
CsvExampleGen
)
housing = CsvExampleGen("sample_data/california_housing_train.csv")
housing
----------
CsvExampleGen(
spec: <tfx.types.standard_component_specs.FileBasedExampleGenSpec object at 0x7fcd90435450>,
executor_spec: <tfx.dsl.components.base.executor_spec.BeamExecutorSpec object at 0x7fcd90435850>,
driver_class: <class 'tfx.components.example_gen.driver.FileBasedDriver'>,
component_id: CsvExampleGen,
inputs: {},
outputs: {
'examples': OutputChannel(artifact_type=Examples,
producer_component_id=CsvExampleGen,
output_key=examples,
additional_properties={},
additional_custom_properties={})
}
)
for record in housing.outputs['examples']:
print(record)
TypeError Traceback (most recent call last) in ----> 1 for record in housing.outputs['examples']: 2 print(record)
TypeError: 'OutputChannel' object is not iterable
Have you got a chance to take a look at this section in tutorials, which explains how to display the artifacts of ExampleGen
component? You can modify the code below (Source: TFX Tutorial) to achieve the same.
# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'Split-train')
# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
for name in os.listdir(train_uri)]
# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")
# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
serialized_example = tfrecord.numpy()
example = tf.train.Example()
example.ParseFromString(serialized_example)
pp.pprint(example)