pythontensorflowgoogle-colaboratorytensorflow-federatedfederated-learning

AttributeError: 'MapDataset' object has no attribute 'preprocess' in tensorflow_federated tff


I'm testing this tutorial with non-IID distribution for federated learning: https://www.tensorflow.org/federated/tutorials/tff_for_federated_learning_research_compression

In this posted question TensorFlow Federated: How to tune non-IIDness in federated dataset? it suggested to use tff.simulation.datasets.build_single_label_dataset() as a way to produce a non-IID distribution for the dataset.

I tried to apply that first (see the code) and got an error !

emnist_train, emnist_test = tff.simulation.datasets.emnist.load_data(
    only_digits=False)
emnist_train1 = tff.simulation.datasets.build_single_label_dataset(
  emnist_train.create_tf_dataset_from_all_clients(),
  label_key='label', desired_label=1)

print(emnist_train1.element_spec)

OrderedDict([('label', TensorSpec(shape=(), dtype=tf.int32, name=None)), ('pixels', TensorSpec(shape=(28, 28), dtype=tf.float32, name=None))])

print(next(iter(emnist_train1))['label'])

tf.Tensor(1, shape=(), dtype=int32)

MAX_CLIENT_DATASET_SIZE = 418

CLIENT_EPOCHS_PER_ROUND = 1
CLIENT_BATCH_SIZE = 20
TEST_BATCH_SIZE = 500

def reshape_emnist_element(element):
  return (tf.expand_dims(element['pixels'], axis=-1), element['label'])

def preprocess_train_dataset(dataset):
  return (dataset
          .shuffle(buffer_size=MAX_CLIENT_DATASET_SIZE)
          .repeat(CLIENT_EPOCHS_PER_ROUND)
          .batch(CLIENT_BATCH_SIZE, drop_remainder=False)
          .map(reshape_emnist_element))

emnist_train1 = emnist_train1.preprocess(preprocess_train_dataset)

>> ---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-17-cda96c33a0f6> in <module>()
     15           .map(reshape_emnist_element))
     16 
---> 17 emnist_train1 = emnist_train1.preprocess(preprocess_train_dataset)

AttributeError: 'MapDataset' object has no attribute 'preprocess'

Since dataset is filtered, it is not able to preprocess! So, in this case, it is filtered based on what label?

... label_key='label', desired_label=1)

the desired label = 1 for which label in EMNIST?

My Question is:

How can I apply this function tff.simulation.datasets.build_single_label_dataset() to get non-IID dataset (different number of samples for each client) in this specific tutorial ! https://www.tensorflow.org/federated/tutorials/tff_for_federated_learning_research_compression in details without error regarding the filtered dataset!

Appreciate any help!

Thanks a lot!


Solution

  • Possibly there is some confusion between the tff.simulation.datasets.ClientData and tf.data.Dataset APIs that would be useful to cover.

    tf.data.Dataset does not have a preprocess method, with tff.simulation.datasets.ClientData.preprocess does exist.

    However, tff.simulation.datasets.build_single_label_dataset uses tf.data.Dataset instances: both the input argument and the output result as tf.data.Dataset instances. In this case, emnist_train1 is a tf.data.Dataset which does not have a preprocess method.

    However, all is not lost! The preprocess_train_dataset function takes a tf.data.Dataset argument, and returns a tf.data.Dataset result. This should mean that replacing:

    emnist_train1 = emnist_train1.preprocess(preprocess_train_dataset)
    

    with

    emnist_train1 = preprocess_train_dataset(emnist_train1)
    

    will create a tf.data.Dataset with only a single label ("label non-IID") that is shuffled, repeated, batched, and reshaped. Note that a single tf.data.Dataset is generally used to represent one user in the federated algorithm. To create more, with a random number of batches, something like the following could work:

    client_datasets = [
       emnist_train1.take(random.randint(1, MAX_BATCHES))
       for _ in range(NUM_CLIENTS)
    ]