I'm using the following code to simulate the motion of a set of particles, where a parameter p
determines the probability of a given particle to move or not, and generates an animated plot:
# Comparação entre random walk e difusão em 1d
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as mpatches
import random
M = 100 # Número de walkers
L = 50 # Tamanho da malha
# A cada intervalo de tempo, mover o walker e propagar a difusão
p = 0.22 # Probabilidade de andar, difusividade em μm²/s
pinv = 1.0-p
nsteps = 2001 # Número de intervalos de tempo
# Iniciando os walkers
x = np.zeros(M) # Posição inicial dos walkers nos eixos x, y e z
Z = [(0,0,0) for i in range (M)]
edgesrw = np.array(range(-L,L+1))-0.5
xc = 0.5*(edgesrw[:-1]+edgesrw[1:])
#%%
def animate(it):
global x
x = get_data(Z, M)
# Trajetória dos walkers nos eixos x, y e z
if (np.mod(it,noutput)==0):
A = np.float64(Z)
plot._offsets3d = (A[:,0], A[:,1], A[:,2])
ax.set_title('Tempo = {}, p = {}'.format(it, str(round(p, 4))))
return plot
def get_data(Z, M):
# Atualizar a posição de todos os walkers
for iw in range(M):
rndx = random.random()
dx = -1*(rndx<p)+1*(rndx>pinv)
rndy = random.random()
dy = -1*(rndy<p)+1*(rndy>pinv)
rndz = random.random()
dz = -1*(rndz<p)+1*(rndz>pinv)
x, y, z = Z[iw]
Z[iw] = x+dx, y+dy, z+dz
return Z
plt.ion()
noutput = 5
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
fig.set_size_inches(6, 6)
ax.set_xlim((-50, 50))
ax.set_ylim((-50, 50))
ax.set_zlim((-50, 50))
ax.set_xlabel('Distância percorrida (x)')
ax.set_ylabel('Distância percorrida (y)')
ax.set_zlabel('Distância percorrida (z)')
subs1 = mpatches.Patch(color = 'blue', label = "Ca²\u207A")
ax.legend(handles = [subs1])
x = get_data(Z, M)
plot = ax.scatter (*zip(*Z), marker = 'o', s = 3, color = 'blue')
ani = animation.FuncAnimation(fig = fig, func = animate, frames = nsteps, interval = 50)
ani.save('Íons Ca2+, Dab constante.gif')
plt.show()
Right now, p
is a constant value. This code gives me the following result:
What I want to do now is, instead of always using p
as a constant value, update it over time using the following equation:
Where p0 is the constant value from before, t is the time (counted by the parameter it
in the code) and alpha is another constant value. I know that this equation won't work when t is equal to zero, and in this case I'll consider p being equal to p0.
So, I defined p0
and alpha
, as well as the conditional that will verify if it
is equal to zero or not, and then decide what to do:
# Comparação entre random walk e difusão em 1d
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as mpatches
import random
M = 100 # Número de walkers
L = 50 # Tamanho da malha
# A cada intervalo de tempo, mover o walker e propagar a difusão
p = 0.22 # Probabilidade de andar, difusividade em μm²/s
p0 = 0.22
pinv = 1.0-p
nsteps = 2001 # Número de intervalos de tempo
alpha = 0.76 # Slope da curva experimental
# Iniciando os walkers
x = np.zeros(M) # Posição inicial dos walkers nos eixos x, y e z
Z = [(0,0,0) for i in range (M)]
edgesrw = np.array(range(-L,L+1))-0.5
xc = 0.5*(edgesrw[:-1]+edgesrw[1:])
#%%
def animate(it):
global x
x = get_data(Z, M)
# Trajetória dos walkers nos eixos x, y e z
if (np.mod(it,noutput)==0):
if it == 0:
p = p0
else:
p = p0*it**(alpha-1)
pinv = 1.0-p
A = np.float64(Z)
plot._offsets3d = (A[:,0], A[:,1], A[:,2])
ax.set_title('Tempo = {}, p = {}'.format(it, str(round(p, 4))))
return plot
def get_data(Z, M):
# Atualizar a posição de todos os walkers
for iw in range(M):
rndx = random.random()
dx = -1*(rndx<p)+1*(rndx>pinv)
rndy = random.random()
dy = -1*(rndy<p)+1*(rndy>pinv)
rndz = random.random()
dz = -1*(rndz<p)+1*(rndz>pinv)
x, y, z = Z[iw]
Z[iw] = x+dx, y+dy, z+dz
return Z
plt.ion()
noutput = 5
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
fig.set_size_inches(6, 6)
ax.set_xlim((-50, 50))
ax.set_ylim((-50, 50))
ax.set_zlim((-50, 50))
ax.set_xlabel('Distância percorrida (x)')
ax.set_ylabel('Distância percorrida (y)')
ax.set_zlabel('Distância percorrida (z)')
subs1 = mpatches.Patch(color = 'blue', label = "Ca²\u207A")
ax.legend(handles = [subs1])
x = get_data(Z, M)
plot = ax.scatter (*zip(*Z), marker = 'o', s = 3, color = 'blue')
ani = animation.FuncAnimation(fig = fig, func = animate, frames = nsteps, interval = 50)
ani.save('Íons Ca2+, alpha = {}.gif'.format(alpha))
plt.show()
But I'm pretty sure the placement of this is wrong, because I'm not having the intended result (I expected the overall spread of the particles to be decreased, since p
is supposed to decrease over time according to the equation).
The variables p
and pinv
inside the animate
functions are local to animate
: it means that the values you computed for p
and pinv
inside this function are not going to be "shared" globally. As a consequence, every time you call get_data(Z, M)
from inside animate
, you are computing new data with the initial global values of p
and pinv
.
Here I modified get_data
to receive updated values. Also note that I have changed the order of commands inside animate
:
# Comparação entre random walk e difusão em 1d
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as mpatches
import random
M = 100 # Número de walkers
L = 50 # Tamanho da malha
# A cada intervalo de tempo, mover o walker e propagar a difusão
p = 0.22 # Probabilidade de andar, difusividade em μm²/s
p0 = 0.22
pinv = 1.0-p
nsteps = 2001 # Número de intervalos de tempo
alpha = 0.76 # Slope da curva experimental
# Iniciando os walkers
x = np.zeros(M) # Posição inicial dos walkers nos eixos x, y e z
Z = [(0,0,0) for i in range (M)]
edgesrw = np.array(range(-L,L+1))-0.5
xc = 0.5*(edgesrw[:-1]+edgesrw[1:])
#%%
def animate(it):
global x
# Trajetória dos walkers nos eixos x, y e z
if (np.mod(it,noutput)==0):
if it == 0:
p = p0
else:
p = p0*it**(alpha-1)
pinv = 1.0-p
x = get_data(Z, M, p, pinv)
A = np.float64(Z)
plot._offsets3d = (A[:,0], A[:,1], A[:,2])
ax.set_title('Tempo = {}, p = {}'.format(it, str(round(p, 4))))
def get_data(Z, M, p, pinv):
# Atualizar a posição de todos os walkers
for iw in range(M):
rndx = random.random()
dx = -1*(rndx<p)+1*(rndx>pinv)
rndy = random.random()
dy = -1*(rndy<p)+1*(rndy>pinv)
rndz = random.random()
dz = -1*(rndz<p)+1*(rndz>pinv)
x, y, z = Z[iw]
Z[iw] = x+dx, y+dy, z+dz
return Z
plt.ion()
noutput = 5
fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')
fig.set_size_inches(6, 6)
ax.set_xlim((-50, 50))
ax.set_ylim((-50, 50))
ax.set_zlim((-50, 50))
ax.set_xlabel('Distância percorrida (x)')
ax.set_ylabel('Distância percorrida (y)')
ax.set_zlabel('Distância percorrida (z)')
subs1 = mpatches.Patch(color = 'blue', label = "Ca²\u207A")
ax.legend(handles = [subs1])
x = get_data(Z, M, p, pinv)
plot = ax.scatter (*zip(*Z), marker = 'o', s = 3, color = 'blue')
ani = animation.FuncAnimation(fig = fig, func = animate, frames = nsteps, interval = 50)
# ani.save('Íons Ca2+, alpha = {}.gif'.format(alpha))
plt.show()