I am trying to find the similarity between the sentences tokenised document and a sentence getting the result saved in a list. I want to sort the results based on the similarity score. When I try to sort the output based on the similarity score I get an error?
results=[]
#embedding all the documents and find the similarity between search text and all the tokenize sentences
for docs_sent_token in docs_sent_tokens:
sentence_embeddings = model.encode(docs_sent_token)
sim_score1 = cosine_sim(search_sentence_embeddings, sentence_embeddings)
if sim_score1 > 0:
results.append({
sim_score1,
docs_sent_token,
})
results.sort(key=lambda k : k['sim_score1'] , reverse=True)
print(results)
This is the error I get.
TypeError: 'set' object is not subscriptable
This issue can be solved using dictionaries.
if sim_score1 > 0:
results.append({
'Score':sim_score1,
'Token':docs_sent_token,
})
results.sort(key=lambda k : k['Score'] , reverse=True)
print(results)
But is there any possible way to get the sorting done using the list? I want to get the result in this format.
[{0.91, 'Sentence 1'}, {0.87, 'Sentence 2'}, {0.33, 'Sentence 3'}, {0.30, 'Sentence 4'},
set
s don't have indices or keys to indicate a value to sort by. You can create a list of tuple
s or dict
s instead, sort it and convert it to set
s later on
results.append((
sim_score1,
docs_sent_token
))
# results = [(0.91, 'Sentence 1'), (0.33, 'Sentence 3'), (0.87, 'Sentence 2'), (0.30, 'Sentence 4')]
results.sort(key=lambda k: k[0], reverse=True)
results = [set(t) for t in results]
# or
results.append({
'Score': sim_score1,
'Token': docs_sent_token
})
# results = [{'Score': 0.91, 'Token': 'Sentence 1'}, {'Score': 0.33, 'Token': 'Sentence 3'}, {'Score': 0.87, 'Token': 'Sentence 2'}, {'Score': 0.30, 'Token': 'Sentence 4'}]
results.sort(key=lambda k: k['Score'], reverse=True)
results = [set(d.values()) for d in results]
print(results)
Output
[{0.91, 'Sentence 1'}, {0.87, 'Sentence 2'}, {0.33, 'Sentence 3'}, {0.3, 'Sentence 4'}]