Following the margins vignette https://cran.r-project.org/web/packages/margins/vignettes/Introduction.html#Motivation I would like to know how to plot using persp
after a logit containing a triple interaction.
Using only persp
and effect
only part of the interaction is shown (drat
and wt
)
x1 <- lm(mpg ~ drat * wt * am, data = mtcars)
head(mtcars)
persp(x1, what = "effect")
However I would like to see the same graph above but at am=0
and am=1
. I tried:
persp(x1,"drat","wt", at = list(am = 0:1), what = "effect")
But the same graph is produced. How to see two graphs at am=0 and am=1? or at least two curves representing am=0 and am=1 in the same cube.
Thanks
It doesn't look like you can do it with the persp.glm()
function in the margins
package. You will probably have to do it "by hand".
data(mtcars)
mtcars$hihp <- as.numeric(mtcars$hp > quantile(mtcars$hp,.5))
x1 <- glm(hihp ~ drat * wt * am + disp + qsec, data = mtcars, family=binomial)
#> Warning: glm.fit: algorithm did not converge
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
drat_s <- with(mtcars, seq(min(drat), max(drat),length=25))
wt_s <- with(mtcars, seq(min(wt), max(wt), length=25))
pred_fun <- function(x,y, am=0){
tmp <- data.frame(drat = x, wt = y, am=am,
disp = mean(mtcars$disp, na.rm=TRUE),
qsec = mean(mtcars$qsec, na.rm=TRUE))
predict(x1, newdata=tmp, type="response")
}
p0 <- outer(drat_s, wt_s, pred_fun)
p1 <- outer(drat_s, wt_s, pred_fun, am=1)
persp(drat_s, wt_s, p0, zlim=c(0,1), theta=-80, col=rgb(.75,.75, .75, .75),
xlab = "Axle Ratio",
ylab="Weight",
zlab="Predicted Probability")
par(new=TRUE)
persp(drat_s, wt_s, p1, zlim=c(0,1), theta=-80, col=rgb(1,0,0,.75), xlab="", ylab="", zlab="")
Created on 2022-05-16 by the reprex package (v2.0.1)
If we turn cyl
into a factor and add it to the model, we also have to add it to the tmp
object in the predfun()
function, however it has to have the same properties that it has in the data, i.e., it has to be a factor (that has a single value) that has the same levels and labels as the one in the data. Here's an example:
data(mtcars)
mtcars$hihp <- as.numeric(mtcars$hp > quantile(mtcars$hp,.5))
mtcars$cyl <- factor(mtcars$cyl)
x1 <- glm(hihp ~ drat * wt * am + disp + qsec + cyl, data = mtcars, family=binomial)
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
drat_s <- with(mtcars, seq(min(drat), max(drat),length=25))
wt_s <- with(mtcars, seq(min(wt), max(wt), length=25))
pred_fun <- function(x,y, am=0){
tmp <- data.frame(drat = x, wt = y, am=am,
disp = mean(mtcars$disp, na.rm=TRUE),
qsec = mean(mtcars$qsec, na.rm=TRUE),
cyl = factor(2, levels=1:3, labels=levels(mtcars$cyl)))
predict(x1, newdata=tmp, type="response")
}
p0 <- outer(drat_s, wt_s, pred_fun)
p1 <- outer(drat_s, wt_s, pred_fun, am=1)
persp(drat_s, wt_s, p0, zlim=c(0,1), theta=-80, col=rgb(.75,.75, .75, .75),
xlab = "Axle Ratio",
ylab="Weight",
zlab="Predicted Probability")
par(new=TRUE)
persp(drat_s, wt_s, p1, zlim=c(0,1), theta=-80, col=rgb(1,0,0,.75), xlab="", ylab="", zlab="")
Created on 2022-06-06 by the reprex package (v2.0.1)