I am unable to do a basic non equi join in two data.tables in R without the error:
argument specifying columns specify non existing column(s): cols[2]='abs(x.val - i.val)'
A min. example to show the error.
library(data.table)
set.seed(1); dt1 <- data.table(id= sample(letters[1:3],size = 10,replace = T),val = rnorm(10,mean = 5,sd = 2))
set.seed(2); dt2 <- data.table(id= sample(letters[1:3],size = 10,replace = T),val = rnorm(10,mean = 5,sd = 2))
dt1[dt2,on = .(id,abs(x.val - i.val) <1),nomatch=0]
#> Error in colnamesInt(x, names(on), check_dups = FALSE): argument specifying columns specify non existing column(s): cols[2]='abs(x.val - i.val)'
Created on 2022-05-17 by the reprex package (v2.0.1)
It must be something fundamental I am missing.
Note: I have deliberately kept column names identical in both data tables to test the x. and i. functionality of data.table.
In two steps as on
only accepts =
,<
or >
:
dt1[dt2,on = .(id),nomatch=0,allow.cartesian=T][abs(val - i.val)<1]
id val i.val
1: a 3.142866 3.175512
2: b 4.421077 3.494669
3: b 4.401570 3.494669
4: a 4.988466 4.428577
5: a 3.142866 2.931430
6: a 4.988466 4.943710
7: a 4.988466 4.267357
8: a 3.142866 2.769503
Or to avoid cartesian product:
dt2[,`:=`(val_min=val-1,val_max=val+1)]
dt1[dt2,.(id,x.val,i.val),on = .(id,val>val_min,val<val_max),nomatch=0]
id x.val i.val
1: a 3.142866 3.175512
2: b 4.421077 3.494669
3: b 4.401570 3.494669
4: a 4.988466 4.428577
5: a 3.142866 2.931430
6: a 4.988466 4.943710
7: a 4.988466 4.267357
8: a 3.142866 2.769503