I have a simple program that renders a couple of 3D objects, using DirectX 3D 9 and HLSL. I'm just starting off with HLSL, I have no experience with 3D rendering.
I am able to change the texture & color of the models and fade between two textures without problems, however I was wondering what the best way to simply fade a 3D object (blend it with the background) would be. I would assume that it wouldn't be done as fading between two textures (using lerp
), since I want the object faded to the entire background, so there would be many different textures behind it.
I'm using the LPD3DXEFFECT
as my effect class, DrawIndexedPrimitive
as the drawing function in each pass, and I only have a single pass. I'm also using Shader Model 3, as this is an older project.
The only way that I thought it possible would be to simply get the color of the pixel before you apply any changes, and then do calculations on it with the color of the texture of the model to attain a faded pixel. However, after looking over the internet, it does not appear that it's actually possible to get the color of a pixel before doing anything to it with HLSL.
Is it even possible to do something like this using HLSL? Am I missing something that could assist me here?
Any help is appreciated!
After a long grind, I finally found a very good workaround for my problem, and I will try to explain my understanding of it for anyone else that has a smillar issue. Thanks to Alexander Stewart for suggesting that there may be an in-built way to do it.
Method Description
Instead of taking care of the background fade in the HLSL pixel shader, there is another way to do it, using a method called Frame Buffer Alpha Blending (full MS Docs documentation: https://learn.microsoft.com/en-us/windows/win32/direct3d9/frame-buffer-alpha).
The basic idea behind this method is to provide a simple way of blending a given pixel that is to be rendered, with the existing pixel on the screen. There is a formula that is followed: FinalColor = ObjectPixelColor * SourceBlendFactor + BackgroundPixelColor * DestinationBlendFactor
, all of these "variables" being groups of 4 float values, in the format (R, G, B, A).
How I Implemented it
Before doing anything with the actual shaders, in my Visual Studio C++ file I have to pass a few flags to my render device (I used LPDIRECT3DDEVICE9
as my device class). I had to set render states for both D3DRS_SRCBLEND
and D3DRS_DESTBLEND
, which are reffering to ObjectPixelColor
and DestinationBlendFactor
respectivelly in the formula above. These will be my factors that will be multiplying each one of my object and background pixel colors. There are many possible values that can be assigned to D3DRS_SRCBLEND
and D3DRS_DESTBLEND
, full list is available in the MS Docs link above, but in order to achieve what I wanted to (simply a way to fade an object into the background with an alpha number going from 0 to 1), I figured out the flags should be like this: SetRenderState(D3DRS_SRCBLEND, D3DBLEND_SRCALPHA); SetRenderState(D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA);
.
After setting these flags, before passing through my shaders & rendering, I just needed to set one more flag: SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
. I was also able to alternate between TRUE
and FALSE
here without changing anything else with no rendering problems (although my project was very simple, it will probably cause issues on larger projects). You can then pass any arguments you want, such as the alpha number, to the HLSL shader as a global variable (I did it using SetValue()
).
Going back to my HLSL shader, after these changes, passing a color float4
variable taken from the tex2D()
function from my pixel shader with an alpha value between 0 and 1 yielded the correct alpha, provided there aren't other issues (another issue that I had but hadn't realized at the time was the fact that my transparent object was actually rendering before the background, so I can only reccomend to check the rendering order when working on rendering projects).
I'm sure there could have probably been a better way of implementing this with the latest DirectX, but my compiler only supports Shader Model 3 and lower.