I have a dataframe with a datetime column in string type, like this:
>>> df2
date a b
0 2020/1/1 8.0 5.0
1 2020/1/2 10.0 7.0
2 2020/1/3 6.0 1.0
3 2020/1/4 6.0 3.0
I want use its 'date' column to generate a new index with various length by multiply a array, like this:
>>> idx_list = [2,3,1,2]
>>> df2.date*idx_list
but I got a unexpected result:
>>> df2.date*idx_list
0 2020/1/12020/1/1
1 2020/1/22020/1/22020/1/2
2 2020/1/3
3 2020/1/42020/1/4
I want to make a new index series to be a sequential data, like:
0 2020/1/1
1 2020/1/1
2 2020/1/2
3 2020/1/2
4 2020/1/2
5 2020/1/3
6 2020/1/4
7 2020/1/4
How do I do that?
To duplicate column values, you can use repeat
. Make sure that the length of idx_list
matches the length of the column.
df2 = pd.DataFrame({'date': ['2020/1/1', '2020/1/2', '2020/1/3', '2020/1/4'],
'a': [8.0, 10.0, 6.0, 6.0],
'b': [5.0, 7.0, 1.0, 3.0]})
idx_list = [2,3,1,2]
# use repeat
df2['date'].repeat(idx_list)
0 2020/1/1
0 2020/1/1
1 2020/1/2
1 2020/1/2
1 2020/1/2
2 2020/1/3
3 2020/1/4
3 2020/1/4
Name: date, dtype: object
If you want to duplicate rows of the entire dataframe, then make date
the index, try Index.repeat
to duplicate the index and loc
to duplicate the rows.
# make date the index
df2 = df2.set_index('date')
idx_list = [2,3,1,2]
# use repeat and loc to create duplicated rows
df2 = df2.loc[df2.index.repeat(idx_list)]
print(df2)
a b
date
2020/1/1 8.0 5.0
2020/1/1 8.0 5.0
2020/1/2 10.0 7.0
2020/1/2 10.0 7.0
2020/1/2 10.0 7.0
2020/1/3 6.0 1.0
2020/1/4 6.0 3.0
2020/1/4 6.0 3.0
A reset_index()
call afterwards would make date
back into a column again.