Attempting to verify formally the following problem. https://leetcode.com/problems/count-equal-and-divisible-pairs-in-an-array/
Given a 0-indexed integer array nums
of length n
and an integer k
, return the number of pairs (i, j)
where 0 <= i < j < n
, such that nums[i] == nums[j]
and (i * j)
is divisible by k
.
function countPairs(nums: number[], k: number): number {
let count = 0;
for(let i = 0; i < nums.length-1; i++) {
for(let j = i+1; j < nums.length; j++) {
if(nums[i] == nums[j] && (i*j) % k == 0) {
count++;
}
}
}
return count;
};
I cannot figure out how to verify this silly thing. Maybe I'm missing a super simple description of the problem and I'm too focused on irrelevant details.
My strategy started with trying to compare the result to the cardinality of a matching set. However, getting dafny to believe the cardinality of the set matches during the two loops seems impossible.
function method satPairs(nums: seq<nat>, k: nat, a: nat, b: nat): bool
requires k > 0
requires a <= b < |nums|
{
nums[a] == nums[b] && (a*b) % k == 0
}
function matchPairs(nums: seq<nat>, k: nat): nat
requires k > 0
{
|set x,y | 0 <= x < y < |nums| && nums[x] == nums[y] && (x*y) % k == 0 :: (x,y)|
}
function method pairsI(nums: seq<nat>, k: nat, i: nat): set<(nat, nat)>
requires k > 0
requires 0 <= i < |nums|
ensures forall x,y :: 0 <= x < i && x <= y < |nums| && satPairs(nums, k, x, y) ==> (x,y) in pairsI(nums, k, i)
{
set x: nat,y:nat | 0 <= x < i && x <= y < |nums| && satPairs(nums, k, x, y) :: (x,y)
}
I also tried to setup invariants based on counts using methods which could count the matching pairs using a column at a time. However, I ran into no end of incompatible conditions maintaining the invariants before and after the while loop. I was hoping these helper functions could be defined recursively allowing some induction on the result to be used inside the two loops for each invariant, but it didn't work.
function countSeqPairs(nums: seq<nat>, k: nat, start: nat, stop: nat): nat
requires k > 0
requires start <= stop <= |nums|
decreases |nums|-start, |nums|-stop
{
if start > stop || stop >= |nums| || start >= |nums| then 0 else
if stop < |nums| then (if satPairs(nums, k, start, stop) then 1 + countSeqPairs(nums, k, start, stop+1) else countSeqPairs(nums, k, start, stop+1)) else countSeqPairs(nums, k, start+1, stop+2)
}
function countSeqSlice(nums: seq<nat>, k: nat, start: nat, stop: nat): nat
requires k > 0
requires start <= stop <= |nums|
decreases |nums| - stop
{
if start > stop || stop >= |nums| then 0
else if satPairs(nums, k, start, stop) then 1 + countSeqSlice(nums, k, start, stop+1) else countSeqSlice(nums, k, start, stop+1)
}
Here is the main method, with various non-working attempts at invariants.
method countPairs(nums: seq<nat>, k: nat) returns (count: nat)
requires k > 0
requires |nums| >= 2;
{
count := 0;
//ghost var cpairs: set<(nat, nat)> := {};
for i : nat := 0 to |nums|-2
invariant count >= 0
//invariant cpairs == pairsI(nums, k, i)
{
// ghost var occount := count;
// ghost var increment := 0;
for j : nat := i+1 to |nums|-1
invariant count >= 0
// invariant count == occount + increment
// invariant satPairs(nums, k, i, j) ==> increment == increment + 1
// invariant count == 0 || satPairs(nums, k, i, j) ==> count == count + 1
//invariant cpairs == pairsI(nums, k, i) + set z: nat | i+1 <= z <= j && satPairs(nums, k, i, z) :: (i, z)
{
// ghost var currcount := count;
// if nums[i] == nums[j] && (i*j)% k == 0 {
if i+1 <= j <= j && satPairs(nums, k, i, j) {
// increment := increment + 1;
//cpairs := {(i,j)}+cpairs;
count := count + 1;
}
}
}
}
It seems like there is no shorter description than the method itself for what is to be ensured. In addition to help with the above, I have three questions, generally how do you describe an invariant for something which is sort of manifestly arbitrary like this?
Secondly, what strategy can be used to handle loop invariants which are not true before the loop is run but are afterwards? It tends to be the initial condition is set to 0 or some other empty value, but then after the 0-th iteration of the loop it will be set to some value, and then the invariant fails. I keep running into this situation and it feels like there should be some sort of standard guard for it.
Finally, can or should ghost variables be used in method ensure statements?
Here is one way to do it.
function method satPairs(nums: seq<nat>, k: nat, a: nat, b: nat): bool
requires k > 0
requires a <= b < |nums|
{
nums[a] == nums[b] && (a*b) % k == 0
}
function matchPairsHelper(nums: seq<nat>, k: nat, bound: int): set<(int, int)>
requires k > 0
requires bound <= |nums|
{
set x,y | 0 <= x < bound && x < y < |nums| && satPairs(nums, k, x, y) :: (x,y)
}
function matchPairs(nums: seq<nat>, k: nat): set<(int, int)>
requires k > 0
{
matchPairsHelper(nums, k, |nums|)
}
function innerMatchPairsHelper(nums: seq<nat>, k: nat, outer: int, inner_bound: int): set<(int, int)>
requires k > 0
requires inner_bound <= |nums|
{
set y | 0 <= outer < y < inner_bound && satPairs(nums, k, outer, y) :: (outer,y)
}
method countPairs(nums: seq<nat>, k: nat) returns (count: nat)
requires k > 0
requires |nums| >= 2
ensures count == |matchPairs(nums, k)|
{
count := 0;
for i : nat := 0 to |nums|
invariant count == |matchPairsHelper(nums, k, i)|
{
for j : nat := i+1 to |nums|
invariant count == |matchPairsHelper(nums, k, i)| + |innerMatchPairsHelper(nums, k, i, j)|
{
assert innerMatchPairsHelper(nums, k, i, j+1) ==
(if satPairs(nums, k, i, j) then {(i, j)} else {}) + innerMatchPairsHelper(nums, k, i, j);
if satPairs(nums, k, i, j) {
count := count + 1;
}
}
assert matchPairsHelper(nums, k, i+1) == matchPairsHelper(nums, k, i) + innerMatchPairsHelper(nums, k, i, |nums|);
}
}
A few notes:
To your other questions:
how do you describe an invariant for something which is sort of manifestly arbitrary like this?
I'm not sure I understand the question. Are you asking "how do I discover the right loop invariants for this postcondition?" or "how do I state the postcondition when it seems like it is just as long as the code itself?"
what strategy can be used to handle loop invariants which are not true before the loop is run but are afterwards?
I didn't need this in my solution, but if you do need it then the easiest way is something like i == 0 || <invariant that is true only after loop starts>
. Generally I consider such invariants to have a "bad smell" and try to refactor to avoid them. Sometimes they are unavoidable though.
can or should ghost variables be used in method ensure statements?
Not sure I understand this one either. You cannot refer to any local variables of a method in an ensures
clause except those that are returned by the method. If needed you can return a ghost variable as in
method Foo() returns (bar: int, ghost baz: int)
ensures ... mentions bar and baz just fine ...
Does that answer this one?