Issue
I'm attempting to use the 'adaboost'
method within the Caret
and fastAdaboost
packages. My objective is to build a classification tree
using `machine learning techniques in R for an upcoming project at university and I am following this tutorial here.
For this model (see below), I have downloaded the libraries caret
and fastAdaboost
and whenever I try to run my model, I get the message.
Error: object 'model_adaboost' not found
I don't understand what's wrong with this code (see below) as it's identical to my other models and I don't know why R cannot find my model.
Many thanks if anyone can lend a hand.
These models are running just fine:
#Random Forest
**# Train the model using rf
model_rf = train(Country ~., data=train.data, method='rf', metric=metric, tuneLength= tuneLength, trControl = fitControl)
model_rf
#Naive Bayes
nb_tune <- data.frame(usekernel = TRUE, fL = 0, adjust=seq(0, 5, by = 1))
model.nb1 = train(Country ~., data=train.data,'nb', trControl=fitControl, metric=metric, tuneLength=tuneLength, tuneGrid = nb_tune, laplace = 0:3)
model.nb1
Structure of my data frame
data.frame': 367 obs. of 10 variables:
$ Country : Factor w/ 3 levels "Italy","Turkey",..: 2 3 1 3 2 3 3 2 3 3 ...
$ Low.Freq : num -0.1 0.381 0.705 0.441 -0.603 ...
$ High.Freq : num -0.503 0.96 -0.371 0.207 -0.336 ...
$ Peak.Freq : num -0.4751 -0.0966 -0.2089 -0.1952 -0.3184 ...
$ Delta.Freq : num -0.334 0.122 -0.567 -0.148 -0.132 ...
$ Delta.Time : num -0.445 1.565 -1.145 0.131 0.666 ...
$ Peak.Time : num 0.0289 0.1897 -0.4765 -0.029 0.1492 ...
$ Center.Freq: num -0.5294 -0.0507 -0.1589 -0.0819 -0.405 ...
$ Start.Freq : num 0.672 1.787 0.403 0.388 -1.068 ...
$ End.Freq : num -0.5393 -0.8247 -0.0148 -0.9138 0.0482 ...
R CODE
library(caret)
library(fastAdaboost)
#Data is 'Clusters_Dummy_2'
##Produce a new version of the dataframe 'Clusters_Dummy' with the rows shuffled
NewClusters=Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]
#Produce a dataframe
NewCluster<-as.data.frame(NewClusters)
#display
print(NewCluster)
#Check the structure of the data
str(NewCluster)
#Number of rows
nrow(NewCluster)
#Split the data frame into 70% to 30% train and test data
training.parameters <- Cluster_Dummy_2$Country %>%
createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]
##Auxiliary function for controlling model fitting
fitControl <- trainControl(## 10-fold CV
method = "repeatedcv",
number = 10,
## repeated ten times
repeats = 10,
classProbs = TRUE,
verbose = TRUE)
fitGrid_2 <- expand.grid(mfinal = (1:3)*3, # This is new!
maxdepth = c(1, 3), # ...and this
coeflearn = c("Breiman"),
iter=100) # ...and this
model_adaboost = train(Country ~ ., data=train.data, method='adaboost', tuneLength = tuneLength, metric=metric, trControl = fitControl,
tuneGrid=fitGrid_2, verbose=TRUE)
model_adaboost
Data
structure(list(Low.Freq = c(435L, 94103292L, 1L, 2688L, 8471L,
28818L, 654755585L, 468628164L, 342491L, 2288474L, 3915L, 411L,
267864894L, 3312618L, 5383L, 8989443L, 1894L, 534981L, 9544861L,
3437614L, 475386L, 7550764L, 48744L, 2317845L, 5126197L, 2445L,
8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L, 9L, 605L,
9199L, 3022L, 30218156L, 46423L, 38L, 88L, 396396244L, 28934316L,
7723L, 95688045L, 679354L, 716352L, 76289L, 332826763L, 6L, 90975L,
83103577L, 9529L, 229093L, 42810L, 5L, 18175302L, 1443751L, 5831L,
8303661L, 86L, 778L, 23947L, 8L, 9829740L, 2075838L, 7434328L,
82174987L, 2L, 94037071L, 9638653L, 5L, 3L, 65972L, 0L, 936779338L,
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L,
4440739L, 612L, 3966L, 8L, 9255L, 84127L, 96218L, 5690L, 56L,
3561L, 78738L, 1803363L, 809369L, 7131L, 0L), High.Freq = c(6071L,
3210L, 6L, 7306092L, 6919054L, 666399L, 78L, 523880161L, 4700783L,
4173830L, 30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L,
74L, 1L, 65422L, 595L, 89093186L, 946520L, 6940919L, 655350L,
4L, 6L, 618L, 2006697L, 889L, 1398L, 28769L, 90519642L, 984L,
0L, 296209525L, 487088392L, 5L, 894L, 529L, 5L, 99106L, 2L, 926017L,
9078L, 1L, 21L, 88601017L, 575770L, 48L, 8431L, 194L, 62324996L,
5L, 81L, 40634727L, 806901520L, 6818173L, 3501L, 91780L, 36106039L,
5834347L, 58388837L, 34L, 3280L, 6507606L, 19L, 402L, 584L, 76L,
4078684L, 199L, 6881L, 92251L, 81715L, 40L, 327L, 57764L, 97668898L,
2676483L, 76L, 4694L, 817120L, 51L, 116712L, 666L, 3L, 42841L,
9724L, 21L, 4L, 359L, 2604L, 22L, 30490L, 5640L, 34L, 51923625L,
35544L), Peak.Freq = c(87005561L, 9102L, 994839015L, 42745869L,
32840L, 62737133L, 2722L, 24L, 67404881L, 999242982L, 3048L,
85315406L, 703037627L, 331264L, 8403609L, 3934064L, 50578953L,
370110665L, 3414L, 12657L, 40L, 432L, 7707L, 214L, 68588962L,
69467L, 75L, 500297L, 704L, 1L, 102659072L, 60896923L, 4481230L,
94124925L, 60164619L, 447L, 580L, 8L, 172L, 9478521L, 20L, 53L,
3072127L, 2160L, 27301893L, 8L, 4263L, 508L, 712409L, 50677L,
522433683L, 112844L, 193385L, 458269L, 93578705L, 22093131L,
6L, 9L, 1690461L, 0L, 4L, 652847L, 44767L, 21408L, 5384L, 304L,
721L, 651147L, 2426L, 586L, 498289375L, 945L, 6L, 816L, 46207L,
39135L, 6621028L, 66905L, 26905085L, 4098L, 0L, 14L, 88L, 530L,
97809006L, 90L, 6L, 260792844L, 9L, 833205723L, 99467321L, 5L,
8455640L, 54090L, 2L, 309L, 299161148L, 4952L, 454824L), Delta.Freq = c(5L,
78L, 88553L, 794L, 5L, 3859122L, 782L, 36L, 8756801L, 243169338L,
817789L, 8792384L, 7431L, 626921743L, 9206L, 95789L, 7916L, 8143453L,
6L, 4L, 6363L, 181125L, 259618L, 6751L, 33L, 37960L, 0L, 2L,
599582228L, 565585L, 19L, 48L, 269450424L, 70676581L, 7830566L,
4L, 86484313L, 21L, 90899794L, 2L, 72356L, 574280L, 869544L,
73418L, 6468164L, 2259L, 5938505L, 31329L, 1249L, 354L, 8817L,
3L, 2568L, 82809L, 29836269L, 5230L, 37L, 33752014L, 79307L,
1736L, 8522076L, 40L, 2289135L, 862L, 801448L, 8026L, 5L, 15L,
4393771L, 405914L, 71098L, 950288L, 8319L, 1396973L, 832L, 70L,
1746L, 61907L, 8709547L, 300750537L, 45862L, 91417085L, 79892L,
47765L, 5477L, 18L, 4186L, 2860L, 754038591L, 375L, 53809223L,
72L, 136L, 509L, 232325L, 13128104L, 1692L, 8581L, 23L), Delta.Time = c(1361082L,
7926L, 499L, 5004L, 3494530L, 213L, 64551179L, 70L, 797L, 5L,
72588L, 86976L, 5163L, 635080L, 3L, 91L, 919806257L, 81443L,
3135427L, 4410972L, 5810L, 8L, 46603718L, 422L, 1083626L, 48L,
15699890L, 7L, 90167635L, 446459879L, 2332071L, 761660L, 49218442L,
381L, 46L, 493197L, 46L, 798597155L, 45342274L, 6265842L, 6L,
3445819L, 351L, 1761227L, 214L, 959L, 908996387L, 6L, 3855L,
9096604L, 152664L, 7970052L, 32366926L, 31L, 5201618L, 114L,
7806411L, 70L, 239L, 5065L, 2L, 1L, 14472831L, 122042249L, 8L,
495604L, 29L, 8965478L, 2875L, 959L, 39L, 9L, 690L, 933626665L,
85294L, 580093L, 95934L, 982058L, 65244056L, 137508L, 29L, 7621L,
7527L, 72L, 2L, 315L, 6L, 2413L, 8625150L, 51298109L, 851L, 890460L,
160736L, 6L, 850842734L, 2L, 7L, 76969113L, 190536L), Peak.Time = c(1465265L,
452894L, 545076172L, 8226275L, 5040875L, 700530L, 1L, 3639L,
20141L, 71712131L, 686L, 923L, 770569738L, 69961L, 737458636L,
122403L, 199502046L, 6108L, 907L, 108078263L, 7817L, 4L, 6L,
69L, 721L, 786353L, 87486L, 1563L, 876L, 47599535L, 79295722L,
53L, 7378L, 591L, 6607935L, 954L, 6295L, 75514344L, 5742050L,
25647276L, 449L, 328566184L, 4L, 2L, 2703L, 21367543L, 63429043L,
708L, 782L, 909820L, 478L, 50L, 922L, 579882L, 7850L, 534L, 2157492L,
96L, 6L, 716L, 5L, 653290336L, 447854237L, 2L, 31972263L, 645L,
7L, 609909L, 4054695L, 455631L, 4919894L, 9L, 72713L, 9997L,
84090765L, 89742L, 5L, 5028L, 4126L, 23091L, 81L, 239635020L,
3576L, 898597785L, 6822L, 3798L, 201999L, 19624L, 20432923L,
18944093L, 930720236L, 1492302L, 300122L, 143633L, 5152743L,
417344L, 813L, 55792L, 78L), Center_Freq = c(61907L, 8709547L,
300750537L, 45862L, 91417085L, 79892L, 47765L, 5477L, 18L, 4186L,
2860L, 754038591L, 375L, 53809223L, 72L, 136L, 4700783L, 4173830L,
30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L, 74L, 1L, 65422L,
595L, 89093186L, 946520L, 6940919L, 48744L, 2317845L, 5126197L,
2445L, 8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L,
9L, 651547554L, 45554L, 38493L, 91055218L, 38L, 1116474L, 2295482L,
3001L, 9L, 3270L, 141L, 53644L, 667983L, 565598L, 84L, 971L,
555498297L, 60431L, 6597L, 856943893L, 607815536L, 4406L, 79L,
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L,
4440739L, 754038591L, 375L, 53809223L, 72L, 136L, 509L, 232325L,
13128104L, 1692L, 8581L, 23L, 5874213L, 4550L, 644668065L, 3712371L,
5928L, 8833L, 7L, 2186023L, 61627221L, 37297L, 716427989L, 21387L
), Start.Freq = c(426355L, 22073538L, 680374L, 41771L, 54L, 6762844L,
599171L, 108L, 257451851L, 438814L, 343045L, 4702L, 967787L,
1937L, 18L, 89301735L, 366L, 90L, 954L, 7337732L, 70891703L,
4139L, 10397931L, 940000382L, 7L, 38376L, 878528819L, 6287L,
738366L, 31L, 47L, 5L, 6L, 77848L, 2366508L, 45L, 3665842L, 7252260L,
6L, 61L, 3247L, 448348L, 1L, 705132L, 144L, 7423637L, 2L, 497L,
844927639L, 78978L, 914L, 131L, 7089563L, 927L, 9595581L, 2774463L,
1651L, 73509280L, 7L, 35L, 18L, 96L, 1L, 92545512L, 27354947L,
7556L, 65019L, 7480L, 71835L, 8249L, 64792L, 71537L, 349389666L,
280244484L, 82L, 6L, 40L, 353872L, 0L, 103L, 1255L, 4752L, 29L,
76L, 81185L, 14L, 9L, 470775630L, 818361265L, 57947209L, 44L,
24L, 41295L, 4L, 261449L, 9931404L, 773556640L, 930717L, 65007421L
), End.Freq = c(71000996L, 11613579L, 71377155L, 1942738L, 8760748L,
79L, 455L, 374L, 8L, 5L, 2266932L, 597833L, 155488L, 3020L, 4L,
554L, 4L, 16472L, 1945649L, 668181101L, 649780L, 22394365L, 93060602L,
172146L, 20472L, 23558847L, 190513L, 22759044L, 44L, 78450L,
205621181L, 218L, 69916344L, 23884L, 66L, 312148L, 7710564L,
4L, 422L, 744572L, 651547554L, 45554L, 38493L, 91055218L, 38L,
1116474L, 2295482L, 3001L, 9L, 3270L, 141L, 55595L, 38451L, 8660867L,
14L, 96L, 345L, 6L, 44L, 8235824L, 910517L, 1424326L, 87102566L,
53644L, 667983L, 565598L, 84L, 971L, 555498297L, 60431L, 6597L,
856943893L, 607815536L, 4406L, 79L, 7L, 28978746L, 7537295L,
6L, 633L, 345860066L, 802L, 1035131L, 602L, 2740L, 8065L, 61370968L,
429953765L, 981507L, 8105L, 343787257L, 44782L, 64184L, 12981359L,
123367978L, 818775L, 123745614L, 25345654L, 3L), Country = c("Holland",
"Holland", "Holland", "Holland", "Holland", "Holland", "Spain",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "Spain", "Spain", "Holland", "Holland", "Holland",
"Holland", "Holland", "Holland", "France", "France", "France",
"France", "France", "France", "France", "France", "France", "France",
"France", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "France", "France", "France", "France", "Holland",
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland",
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Holland", "Holland", "Holland", "Holland", "France", "France",
"France", "France", "France", "France", "France", "Spain", "Spain",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "France", "France", "France")), row.names = c(NA,
99L), class = "data.frame")
[1]: https://www.machinelearningplus.com/machine-learning/caret-package/https://
There are a few things going on here. First, you hadn't defined metric
, and executing the code says as much. I'll just use the default metric in what's below. Second, as I suggested in the comments, there are only two tuning parameters in the adaboost
model, nIter
and method
("Adaboost.MI"
or "Real Adaboost"
). So, we could change the tuning grid to be the following:
fitGrid_2 <- expand.grid(nIter = seq(10, 100, by=10),
method=c("Adaboost.MI", "Real Adaboost"))
Now, when we run the model:
model_adaboost = train(Country ~ .,
data=train.data,
method='adaboost',
tuneLength = tuneLength,
trControl = fitControl,
tuneGrid=fitGrid_2,
verbose=TRUE)
we get a load of warnings and empty results. The warnings are all like this:
50: model fit failed for Fold03.Rep01: nIter=100, method=Adaboost.MI Error : Dependent variables must have two levels
This suggests that adaboost
requires the classification task to only have two possibilities. If we looked at just two countries, it works:
NewClusters2 <- subset(NewClusters, Country %in% c("France", "Spain"))
training.parameters <- NewClusters2$Country %>%
createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters2[training.parameters, ]
test.data <- NewClusters2[-training.parameters, ]
model_adaboost = train(Country ~ .,
data=train.data,
method='adaboost',
tuneLength = tuneLength,
trControl = fitControl,
tuneGrid=fitGrid_2,
verbose=TRUE)