Issue:
I want to plot ROC curves
from multi.roc()
objects for 12 models
(see below) that I have produced onto the same plot to compare them. All my models contain 3 classes
, which makes this conundrum a bit more complicated. I tried to follow the code from a question that I previously asked here; however, I kept on getting error messages since that question is a binary problem and my data has three classes for the dependent variable 'Country' (3 categorical levels - France, Holland, and Spain)
I have tried using three different methods: see Attempt 1, Attempt 2, and Attempt 3, and digrams 1 and 2
With all attempts, I am not sure how to incorporate 12 models onto the same plot. Diagram 1 is obviously wrong as the AUC = 0.90
I've searched online through other StackOverflow questions and tutorials, but nothing entirely solves the whole problem. Any solutions that I have found so far, I cannot get their code to work properly. Any help is highly appreciated.
R-CODE: Train the models
#Open libraries
library(MASS)
library(caret)
library(e1071)
library(klaR)
library(gbm)
library(earth)
library(kernlab)
library(rpart)
library(randomForest)
library(mlbench)
library(adabag)
library(ada)
library(fastAdaboost)
library(xgboost)
library(C50)
##Produce a new version of the dataframe 'Clusters_Dummy' with the rows shuffled
NewClusters=Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]
#Produce a dataframe
NewCluster<-as.data.frame(NewClusters)
#display
print(NewCluster)
#Check the structure of the data
str(NewCluster)
#Number of rows
nrow(NewCluster)
#Split the data frame into 70% to 30% train and test data
training.parameters <- Cluster_Dummy_2$Country %>%
createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]
sapply(train.data, summary) # Look at a summary of the training data
####################################################
#FIT MODELS: Auxiliary function to train the models
###################################################
fitControl <- trainControl(## 10-fold CV
method = "repeatedcv",
number = 10,
## repeated ten times
repeats = 10,
classProbs = TRUE,
verbose = TRUE)
tuneLength <- 10
metric <- "Accuracy"
#####
#LDA#
#####
#Train the model
lda.fit.CV = train(Country ~ ., data=train.data, method="lda",
trControl = fitControl, metric=metric, tuneLength = tuneLength)
lda.fit.CV
#####################################
# Stochastic Boosted Gradient Trees #
#####################################
gbmGrid <- expand.grid(interaction.depth = c(1, 5, 9),
n.trees = (1:30)*50,
shrinkage = 0.1,
n.minobsinnode = 20)
#Stochastic Boosted Gradient Tree: model 1
gbmFit1 <- train(Country ~ ., data=train.data, method = "gbm", metric=metric,
trControl = fitControl, tuneLength = tuneLength, verbose=FALSE)
gbmFit1
#Stochastic Boosted Gradient Tree: model 2
gbmFit2 <- train(Country ~ ., data=train.data, method = "gbm", trControl = fitControl,
metric=metric, tuneLength = tuneLength, tuneGrid = gbmGrid, verbose=FALSE)
gbmFit2
#########################################################
# Multivariate Adaptive Regression Splines (MARS) model
#########################################################
# Step 1: Define the tuneGrid
marsGrid <- expand.grid(nprune = c(2, 4, 6, 8, 10),
degree = c(1, 2, 3))
# Train the model using randomForest and predict on the training data itself.
model_mars = train(Country ~ ., data=train.data, method='earth', metric='ROC', tuneGrid = marsGrid, trControl = fitControl, tuneLength = tuneLength)
model_mars
###############################
# Single Vector Machine (SVM) #
###############################
model_svmRadial = train(Country ~ ., data=train.data, method='svmRadial',, metric=metric, trControl = fitControl, tuneLength= tuneLength)
model_svmRadial
###############################################
# Recursive Partitioning Classification Trees #
###############################################
f <- as.formula(paste0("Country ~ ", paste0(names(train.data)[2:10], collapse = "+")))
rpart.ctrl <- rpart.control(minsplit = 5, minbucket = 5, cp = seq(0, 0.02, 0.0001))
dt.rpart <- train(form = f, data = train.data, method = "rpart", metric = metric, trControl = fitControl, tuneGrid = rpart.ctrl, tuneLength= tuneLength)
dt.rpart
##############
Naive Bayes
############
#Tune the model
nb_tune <- data.frame(usekernel = TRUE, fL = 0, adjust=seq(0, 5, by = 1))
#Train the model
model.nb = train(Country ~., data=train.data,'nb', trControl=fitControl, metric=metric, tuneLength=tuneLength, tuneGrid = nb_tune, laplace = 0:3)
model.nb
#################
# Random Forest #
#################
model_rf = train(Country ~., data=train.data, method='rf', metric=metric, tuneLength= tuneLength, trControl = fitControl)
model_rf
#####################################
# Regularized Discriminant Analysis #
#####################################
rdaGrid=data.frame(gamma = (0.4)/4, lambda = 3/4)
rdaFit <- train(Country ~ ., data =train.data, method = "rda", trControl = fitControl, tuneLength = tuneLength, metric = "ROC")
rdaFit
#####################################
# Classification with Decision Tree #
#####################################
#Train the model
Decision_Fit <- train(Country ~ ., data =train.data, method = "C5.0", trControl = fitControl, tuneLength = tuneLength, metric = "ROC")
Decision_Fit
##################################
# K-nearest neighbour classifier #
##################################
#Train the model
model_knn = caret::train(Country ~ ., data=train.data, method='knn',
tuneLength = tuneLength, metric=metric,
trControl = fitControl,
tuneGrid = expand.grid(k = seq(1, 101, by = 2)))
model_knn
#############################
# Neural Network Classifier #
#############################
Neural_Fit <- train(Country ~ ., data =train.data, method = "nnet", trControl = fitControl, tuneLength = tuneLength, metric = "ROC")
Neural_Fit
Predict the models on the test data
#####
#LDA#
#####
pred_LDA = predict(lda.fit.CV, test.data, type="prob")
pred_LDA
######################################
# Stochastic Boosted Gradient Trees #
#####################################
## Stochastic Boosted Gradient Trees: model 1
#Predict the model with the test data
pred_model_Tree1 = predict(gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
print(pred_model_Tree1)
## Stochastic Boosted Gradient Trees: model 1
pred_model_Tree1$evaluation <- names(pred_model_Tree1)[apply(pred_model_Tree1, 1, which.max)]
pred_model_Tree1$evaluation
table(pred_model_Tree1$evaluation)
#Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
factor(test.data$Country, levels = unique(test.data$Country)))
#Predict the model with the test data
pred_model_Tree2 = predict(gbmFit2, newdata = test.data, type = "prob")
pred_model_Tree2
print(pred_model_Tree2)
## Stochastic Boosted Gradient Trees: model 2
pred_model_Tree2$evaluation <- names(pred_model_Tree2)[apply(pred_model_Tree2, 1, which.max)]
pred_model_Tree2$evaluation
#########################################
# Bagged Flexible Discriminant Analysis #
########################################
#Predict the bagged flexible discriminate model with the test data
Earth_fitted <- predict(model_mars, newdata = test.data, type = "prob")
Earth_fitted
Earth_fitted$evaluation <- names(Earth_fitted)[apply(Earth_fitted, 1, which.max)]
Earth_fitted$evaluation
###############################
# Single Vector Machine (SVM) #
###############################
#Predict the random forest model with the test data
SVM_fitted <- predict(model_svmRadial, newdata = test.data, type = "prob")
SVM_fitted
#Evaluate the predictions
SVM_fitted$evaluation <- names(SVM_fitted)[apply(SVM_fitted, 1, which.max)]
SVM_fitted$evaluation
###############################################
# Recursive Partitioning Classification Trees #
##############################################
#Predict the random forest model with the test data
rpart_fitted <- predict(dt.rpart, newdata = test.data, type = "prob")
rpart_fitted
#produce a dataframe
rpart_fit<-as.data.frame(rpart_fitted)
rpart_fit
#Evaluate the predictions
rpart_fit$evaluation <- factor(max.col(rpart_fit[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
rpart_fit$evaluation
###############
# Naïve Bayes #
#############
#Predict the model with probabilities
predict.nb<-predict(model.nb$finalModel, newdata = test.data, type = "prob")
predict.nb
#Predict the model with the classes
pedict.class.nb<-predict(model.nb$finalModel, newdata = test.data, type = "prob")$class
pedict.class.nb
#Unlist the results as the function table() and confusionMatrix do not recognize lists
unlist.predicted.nb.Country <-unlist(predict.nb$class)
unlist.predicted.nb.Country
unlist.predicted.nb.posterior <-unlist(predict.nb$posterior)
unlist.predicted.nb.posterior
#produce a dataframe
nb_fit<-as.data.frame(unlist.predicted.nb.posterior)
nb_fit
#Evaluate the predictions
nb_fit$evaluation <- factor(max.col(nb_fit[,1:3]), levels=1:3, labels=c(""France", "Spain", "Holland""))
nb_fit$evaluation
#################
# Random Forest #
################
#Now that we have generated a classification model
#Model Evaluation
pred_rf<-predict(model_rf, newdata = test.data, type = "prob")
pred_rf
#Evaluate the predictions
pred_rf$evaluation <- factor(max.col(pred_rf[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland""))
pred_rf$evaluation
#number of rows
nrow(pred_rf)
#####################################
# Regularized Discriminant Analysis #
#####################################
#Now that we have generated a classification model
#Model Evaluation
pred_rda<-predict(rdaFit, newdata = test.data, type = "prob")
pred_rda
#Evaluate the predictions
rdaFit $evaluation <- factor(max.col(pred_rda[,1:3]), levels=1:3, labels = c(""France", "Spain", "Holland""))
rdaFit $evaluation
#number of rows
nrow(pred_rf)
##################
# Decision Trees #
##################
#Now that we have generated a classification model
#Model Evaluation
pred_decision<-predict(Decision_Fit, newdata = test.data, type = "prob")
pred_decision
#Evaluate the predictions
pred_decision$evaluation <- factor(max.col(pred_decision[,1:3]), levels=1:3, labels = c(""France", "Spain", "Holland""))
pred_decision$evaluation
#########################
# knn nearest neighbor #
########################
#Now that we have generated a classification model
#Model Evaluation
pred_knn<-predict(model_knn, newdata = test.data, type = "prob")
pred_knn
#Evaluate the predictions
pred_knn$evaluation <- factor(max.col(pred_knn[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
pred_knn$evaluation
########################
# knn nearest neighbor #
########################
#Now that we have generated a classification model
#Model Evaluation
pred_net<-predict(Neural_Fit, newdata = test.data, type = "prob")
pred_net
#Evaluate the predictions
pred_net$evaluation <- factor(max.col(pred_net[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
pred_net$evaluation
#Contingency table of predictions
table(pred_net$evaluation)
#Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_net$evaluation, levels = unique(test.data$Country)),
factor(test.data$Country, levels = unique(test.data$Country)))
Produce the mult.roc() ojbects
#LDA
roc_LDA <- multiclass.roc(test.data$Country, pred_LDA, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_LDA
#Boosted Tree model 1
roc_Tree1 <- multiclass.roc(test.data$Country, pred_model_Tree1, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_Tree1
#Boosted Tree model 2
roc_Tree2 <- multiclass.roc(test.data$Country, pred_model_Tree2, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_Tree2
#Mars model
roc_Mars <- multiclass.roc(test.data$Country, Earth_fitted, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_Mars
#Single Vector Machine
roc_SVM <- multiclass.roc(test.data$Country, SVM_fitted, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_SVM
#Single Vector Machine
roc_RART <- multiclass.roc(test.data$Country, rpart_fitted, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_RART
#Naive Bayes
roc_nb <- multiclass.roc(test.data$Country, predict.nb$posterior, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_nb
#Single Vector Machine
roc_RART <- multiclass.roc(test.data$Country, rpart_fitted, levels=c("France", "Spain", "Holland"))
roc_RART
#Random Forest
roc_RF <- multiclass.roc(test.data$Country, pred_rf, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_RF
#Regularized Discriminant Analysis
roc_RDA <- multiclass.roc(test.data$Country, pred_rda, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_RDA
#Decision Trees
roc_Decision <- multiclass.roc(test.data$Country, pred_decision, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_Decision
#K nearest neighbour
roc_knn <- multiclass.roc(test.data$Country, pred_knn, levels=c("France", "Spain", "Holland"), auc=TRUE)
roc_knn
#Neural network
roc_net <- multiclass.roc(test.data$Country, pred_net, levels=c("France", "Spain", "Holland"), auc = TRUE)
roc_net
This is my desired ROC plot
Attempts to solve the problem
#Attempt 1
dev.new()
lvls = levels(Cluster_Dummy_2$Country)
aucs = c()
plot(x=NA, y=NA, xlim=c(0,1), ylim=c(0,1),
ylab='True Positive Rate',
xlab='False Positive Rate',
bty='n')
for (type.id in 1:3) {
type = as.factor(test.data$Country == lvls[type.id])
score = pred_LDA([, 'TRUE']], levels[,1:3])
actual.class = test.data$Country == lvls[type.id]
pred = prediction(score, actual.class)
nbperf = performance(pred, "tpr", "fpr")
roc.x = unlist(nbperf@x.values)
roc.y = unlist(nbperf@y.values)
lines(roc.y ~ roc.x, col=type.id+1, lwd=2)
nbauc = performance(pred, "auc")
nbauc = unlist(slot(nbauc, "y.values"))
aucs[type.id] = nbauc
}
#Error
Error: unexpected '}' in "}"
#However, this version did produce a roc curve for the LDA, although, I think it's obviusly wrong as the auc = 90 %
#Attempt 2
score_data <- data.frame(LDA=pred_LDA,
Country=test.data$Country,
stringsAsFactors=FALSE)
plot(roc(test.data$Country, score_data[,1:3] , direction="<"),
col="red", lwd=3, main="The turtle finds its way")
#Setting levels: control = Italy, case = Turkey
Error in h(simpleError(msg, call)) :
error in evaluating the argument 'x' in selecting a method for function 'plot': Predictor must be numeric or ordered.
In addition: Warning message:
In roc.default(test.data$Country, score_data[, 1:3], direction = "<") :
'response' has more than two levels. Consider setting 'levels' explicitly or using 'multiclass.roc' instead
Attempt 3:
rs <- roc_net[['rocs']]
print(rs)
plot.roc(rs[[1:2]])
sapply(2:length(rs),function(i) lines.roc(rs[[i]],col=i))
#Error
Error in roc.default(x, predictor, ...) : No valid data provided.
Called from: roc.default(x, predictor, ...)
Diagram_1
Diagram 2
Data
structure(list(Low.Freq = c(435L, 94103292L, 1L, 2688L, 8471L,
28818L, 654755585L, 468628164L, 342491L, 2288474L, 3915L, 411L,
267864894L, 3312618L, 5383L, 8989443L, 1894L, 534981L, 9544861L,
3437614L, 475386L, 7550764L, 48744L, 2317845L, 5126197L, 2445L,
8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L, 9L, 605L,
9199L, 3022L, 30218156L, 46423L, 38L, 88L, 396396244L, 28934316L,
7723L, 95688045L, 679354L, 716352L, 76289L, 332826763L, 6L, 90975L,
83103577L, 9529L, 229093L, 42810L, 5L, 18175302L, 1443751L, 5831L,
8303661L, 86L, 778L, 23947L, 8L, 9829740L, 2075838L, 7434328L,
82174987L, 2L, 94037071L, 9638653L, 5L, 3L, 65972L, 0L, 936779338L,
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L,
4440739L, 612L, 3966L, 8L, 9255L, 84127L, 96218L, 5690L, 56L,
3561L, 78738L, 1803363L, 809369L, 7131L, 0L), High.Freq = c(6071L,
3210L, 6L, 7306092L, 6919054L, 666399L, 78L, 523880161L, 4700783L,
4173830L, 30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L,
74L, 1L, 65422L, 595L, 89093186L, 946520L, 6940919L, 655350L,
4L, 6L, 618L, 2006697L, 889L, 1398L, 28769L, 90519642L, 984L,
0L, 296209525L, 487088392L, 5L, 894L, 529L, 5L, 99106L, 2L, 926017L,
9078L, 1L, 21L, 88601017L, 575770L, 48L, 8431L, 194L, 62324996L,
5L, 81L, 40634727L, 806901520L, 6818173L, 3501L, 91780L, 36106039L,
5834347L, 58388837L, 34L, 3280L, 6507606L, 19L, 402L, 584L, 76L,
4078684L, 199L, 6881L, 92251L, 81715L, 40L, 327L, 57764L, 97668898L,
2676483L, 76L, 4694L, 817120L, 51L, 116712L, 666L, 3L, 42841L,
9724L, 21L, 4L, 359L, 2604L, 22L, 30490L, 5640L, 34L, 51923625L,
35544L), Peak.Freq = c(87005561L, 9102L, 994839015L, 42745869L,
32840L, 62737133L, 2722L, 24L, 67404881L, 999242982L, 3048L,
85315406L, 703037627L, 331264L, 8403609L, 3934064L, 50578953L,
370110665L, 3414L, 12657L, 40L, 432L, 7707L, 214L, 68588962L,
69467L, 75L, 500297L, 704L, 1L, 102659072L, 60896923L, 4481230L,
94124925L, 60164619L, 447L, 580L, 8L, 172L, 9478521L, 20L, 53L,
3072127L, 2160L, 27301893L, 8L, 4263L, 508L, 712409L, 50677L,
522433683L, 112844L, 193385L, 458269L, 93578705L, 22093131L,
6L, 9L, 1690461L, 0L, 4L, 652847L, 44767L, 21408L, 5384L, 304L,
721L, 651147L, 2426L, 586L, 498289375L, 945L, 6L, 816L, 46207L,
39135L, 6621028L, 66905L, 26905085L, 4098L, 0L, 14L, 88L, 530L,
97809006L, 90L, 6L, 260792844L, 9L, 833205723L, 99467321L, 5L,
8455640L, 54090L, 2L, 309L, 299161148L, 4952L, 454824L), Delta.Freq = c(5L,
78L, 88553L, 794L, 5L, 3859122L, 782L, 36L, 8756801L, 243169338L,
817789L, 8792384L, 7431L, 626921743L, 9206L, 95789L, 7916L, 8143453L,
6L, 4L, 6363L, 181125L, 259618L, 6751L, 33L, 37960L, 0L, 2L,
599582228L, 565585L, 19L, 48L, 269450424L, 70676581L, 7830566L,
4L, 86484313L, 21L, 90899794L, 2L, 72356L, 574280L, 869544L,
73418L, 6468164L, 2259L, 5938505L, 31329L, 1249L, 354L, 8817L,
3L, 2568L, 82809L, 29836269L, 5230L, 37L, 33752014L, 79307L,
1736L, 8522076L, 40L, 2289135L, 862L, 801448L, 8026L, 5L, 15L,
4393771L, 405914L, 71098L, 950288L, 8319L, 1396973L, 832L, 70L,
1746L, 61907L, 8709547L, 300750537L, 45862L, 91417085L, 79892L,
47765L, 5477L, 18L, 4186L, 2860L, 754038591L, 375L, 53809223L,
72L, 136L, 509L, 232325L, 13128104L, 1692L, 8581L, 23L), Delta.Time = c(1361082L,
7926L, 499L, 5004L, 3494530L, 213L, 64551179L, 70L, 797L, 5L,
72588L, 86976L, 5163L, 635080L, 3L, 91L, 919806257L, 81443L,
3135427L, 4410972L, 5810L, 8L, 46603718L, 422L, 1083626L, 48L,
15699890L, 7L, 90167635L, 446459879L, 2332071L, 761660L, 49218442L,
381L, 46L, 493197L, 46L, 798597155L, 45342274L, 6265842L, 6L,
3445819L, 351L, 1761227L, 214L, 959L, 908996387L, 6L, 3855L,
9096604L, 152664L, 7970052L, 32366926L, 31L, 5201618L, 114L,
7806411L, 70L, 239L, 5065L, 2L, 1L, 14472831L, 122042249L, 8L,
495604L, 29L, 8965478L, 2875L, 959L, 39L, 9L, 690L, 933626665L,
85294L, 580093L, 95934L, 982058L, 65244056L, 137508L, 29L, 7621L,
7527L, 72L, 2L, 315L, 6L, 2413L, 8625150L, 51298109L, 851L, 890460L,
160736L, 6L, 850842734L, 2L, 7L, 76969113L, 190536L), Peak.Time = c(1465265L,
452894L, 545076172L, 8226275L, 5040875L, 700530L, 1L, 3639L,
20141L, 71712131L, 686L, 923L, 770569738L, 69961L, 737458636L,
122403L, 199502046L, 6108L, 907L, 108078263L, 7817L, 4L, 6L,
69L, 721L, 786353L, 87486L, 1563L, 876L, 47599535L, 79295722L,
53L, 7378L, 591L, 6607935L, 954L, 6295L, 75514344L, 5742050L,
25647276L, 449L, 328566184L, 4L, 2L, 2703L, 21367543L, 63429043L,
708L, 782L, 909820L, 478L, 50L, 922L, 579882L, 7850L, 534L, 2157492L,
96L, 6L, 716L, 5L, 653290336L, 447854237L, 2L, 31972263L, 645L,
7L, 609909L, 4054695L, 455631L, 4919894L, 9L, 72713L, 9997L,
84090765L, 89742L, 5L, 5028L, 4126L, 23091L, 81L, 239635020L,
3576L, 898597785L, 6822L, 3798L, 201999L, 19624L, 20432923L,
18944093L, 930720236L, 1492302L, 300122L, 143633L, 5152743L,
417344L, 813L, 55792L, 78L), Center_Freq = c(61907L, 8709547L,
300750537L, 45862L, 91417085L, 79892L, 47765L, 5477L, 18L, 4186L,
2860L, 754038591L, 375L, 53809223L, 72L, 136L, 4700783L, 4173830L,
30L, 811L, 341014L, 780L, 44749L, 91L, 201620707L, 74L, 1L, 65422L,
595L, 89093186L, 946520L, 6940919L, 48744L, 2317845L, 5126197L,
2445L, 8L, 557450L, 450259742L, 21006647L, 9L, 7234027L, 59L,
9L, 651547554L, 45554L, 38493L, 91055218L, 38L, 1116474L, 2295482L,
3001L, 9L, 3270L, 141L, 53644L, 667983L, 565598L, 84L, 971L,
555498297L, 60431L, 6597L, 856943893L, 607815536L, 4406L, 79L,
4885076L, 745L, 8L, 56456L, 125140L, 73043989L, 516476L, 7L,
4440739L, 754038591L, 375L, 53809223L, 72L, 136L, 509L, 232325L,
13128104L, 1692L, 8581L, 23L, 5874213L, 4550L, 644668065L, 3712371L,
5928L, 8833L, 7L, 2186023L, 61627221L, 37297L, 716427989L, 21387L
), Start.Freq = c(426355L, 22073538L, 680374L, 41771L, 54L, 6762844L,
599171L, 108L, 257451851L, 438814L, 343045L, 4702L, 967787L,
1937L, 18L, 89301735L, 366L, 90L, 954L, 7337732L, 70891703L,
4139L, 10397931L, 940000382L, 7L, 38376L, 878528819L, 6287L,
738366L, 31L, 47L, 5L, 6L, 77848L, 2366508L, 45L, 3665842L, 7252260L,
6L, 61L, 3247L, 448348L, 1L, 705132L, 144L, 7423637L, 2L, 497L,
844927639L, 78978L, 914L, 131L, 7089563L, 927L, 9595581L, 2774463L,
1651L, 73509280L, 7L, 35L, 18L, 96L, 1L, 92545512L, 27354947L,
7556L, 65019L, 7480L, 71835L, 8249L, 64792L, 71537L, 349389666L,
280244484L, 82L, 6L, 40L, 353872L, 0L, 103L, 1255L, 4752L, 29L,
76L, 81185L, 14L, 9L, 470775630L, 818361265L, 57947209L, 44L,
24L, 41295L, 4L, 261449L, 9931404L, 773556640L, 930717L, 65007421L
), End.Freq = c(71000996L, 11613579L, 71377155L, 1942738L, 8760748L,
79L, 455L, 374L, 8L, 5L, 2266932L, 597833L, 155488L, 3020L, 4L,
554L, 4L, 16472L, 1945649L, 668181101L, 649780L, 22394365L, 93060602L,
172146L, 20472L, 23558847L, 190513L, 22759044L, 44L, 78450L,
205621181L, 218L, 69916344L, 23884L, 66L, 312148L, 7710564L,
4L, 422L, 744572L, 651547554L, 45554L, 38493L, 91055218L, 38L,
1116474L, 2295482L, 3001L, 9L, 3270L, 141L, 55595L, 38451L, 8660867L,
14L, 96L, 345L, 6L, 44L, 8235824L, 910517L, 1424326L, 87102566L,
53644L, 667983L, 565598L, 84L, 971L, 555498297L, 60431L, 6597L,
856943893L, 607815536L, 4406L, 79L, 7L, 28978746L, 7537295L,
6L, 633L, 345860066L, 802L, 1035131L, 602L, 2740L, 8065L, 61370968L,
429953765L, 981507L, 8105L, 343787257L, 44782L, 64184L, 12981359L,
123367978L, 818775L, 123745614L, 25345654L, 3L), Country = c("Holland",
"Holland", "Holland", "Holland", "Holland", "Holland", "Spain",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "Spain", "Spain", "Holland", "Holland", "Holland",
"Holland", "Holland", "Holland", "France", "France", "France",
"France", "France", "France", "France", "France", "France", "France",
"France", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "France", "France", "France", "France", "Holland",
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland",
"Holland", "Holland", "Holland", "Holland", "Holland", "Holland",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Holland", "Holland", "Holland", "Holland", "France", "France",
"France", "France", "France", "France", "France", "Spain", "Spain",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "Spain", "Spain", "Spain", "Spain", "Spain",
"Spain", "Spain", "France", "France", "France")), row.names = c(NA,
99L), class = "data.frame")
Train the models:
#Open libraries
library(MASS)
library(caret)
library(e1071)
library(klaR)
library(gbm)
library(earth)
library(kernlab)
library(rpart)
library(randomForest)
library(mlbench)
library(adabag)
library(ada)
library(fastAdaboost)
library(xgboost)
library(C50)
##Produce a new version of the dataframe 'Clusters_Dummy' with the rows shuffled
NewClusters=Cluster_Dummy_2[sample(1:nrow(Cluster_Dummy_2)),]
#Produce a dataframe
NewCluster<-as.data.frame(NewClusters)
#display
print(NewCluster)
#Split the data frame into 70% to 30% train and test data
training.parameters <- Cluster_Dummy_2$Country %>%
createDataPartition(p = 0.7, list = FALSE)
train.data <- NewClusters[training.parameters, ]
test.data <- NewClusters[-training.parameters, ]
sapply(train.data, summary) # Look at a summary of the training data
####################################################
#FIT MODELS: Auxiliary function to train the models
###################################################
fitControl <- trainControl(## 10-fold CV
method = "repeatedcv",
number = 10,
## repeated ten times
repeats = 10,
classProbs = TRUE,
verbose = TRUE)
tuneLength <- 10
metric <- "Accuracy"
#####
#LDA#
#####
#Train the model
lda.fit.CV = train(Country ~ ., data=train.data, method="lda",
trControl = fitControl, metric=metric, tuneLength = tuneLength)
lda.fit.CV
#####################################
# Stochastic Boosted Gradient Trees #
#####################################
gbmGrid <- expand.grid(interaction.depth = c(1, 5, 9),
n.trees = (1:30)*50,
shrinkage = 0.1,
n.minobsinnode = 20)
#Stochastic Boosted Gradient Tree: model 1
gbmFit1 <- train(Country ~ ., data=train.data, method = "gbm", metric=metric,
trControl = fitControl, tuneLength = tuneLength, verbose=FALSE)
gbmFit1
#Stochastic Boosted Gradient Tree: model 2
gbmFit2 <- train(Country ~ ., data=train.data, method = "gbm", trControl = fitControl,
metric=metric, tuneLength = tuneLength, tuneGrid = gbmGrid, verbose=FALSE)
gbmFit2
#########################################################
# Multivariate Adaptive Regression Splines (MARS) model
#########################################################
# Step 1: Define the tuneGrid
marsGrid <- expand.grid(nprune = c(2, 4, 6, 8, 10),
degree = c(1, 2, 3))
# Train the model using randomForest and predict on the training data itself.
model_mars = train(Country ~ ., data=train.data, method='earth', metric='ROC', tuneGrid = marsGrid, trControl = fitControl, tuneLength = tuneLength)
model_mars
###############################
# Single Vector Machine (SVM) #
###############################
model_svmRadial = train(Country ~ ., data=train.data, method='svmRadial',, metric=metric, trControl = fitControl, tuneLength= tuneLength)
model_svmRadial
###############################################
# Recursive Partitioning Classification Trees #
###############################################
f <- as.formula(paste0("Country ~ ", paste0(names(train.data)[2:10], collapse = "+")))
rpart.ctrl <- rpart.control(minsplit = 5, minbucket = 5, cp = seq(0, 0.02, 0.0001))
dt.rpart <- train(form = f, data = train.data, method = "rpart", metric = metric, trControl = fitControl, tuneGrid = rpart.ctrl, tuneLength= tuneLength)
dt.rpart
##############
Naive Bayes
############
#Tune the model
nb_tune <- data.frame(usekernel = TRUE, fL = 0, adjust=seq(0, 5, by = 1))
#Train the model
model.nb = train(Country ~., data=train.data,'nb', trControl=fitControl, metric=metric, tuneLength=tuneLength, tuneGrid = nb_tune, laplace = 0:3)
model.nb
#################
# Random Forest #
#################
model_rf = train(Country ~., data=train.data, method='rf', metric=metric, tuneLength= tuneLength, trControl = fitControl)
model_rf
#####################################
# Regularized Discriminant Analysis #
#####################################
rdaGrid=data.frame(gamma = (0.4)/4, lambda = 3/4)
rdaFit <- train(Country ~ ., data =train.data, method = "rda", trControl = fitControl, tuneLength = tuneLength, metric = "ROC")
rdaFit
#####################################
# Classification with Decision Tree #
#####################################
#Train the model
Decision_Fit <- train(Country ~ ., data =train.data, method = "C5.0", trControl = fitControl, tuneLength = tuneLength, metric = "ROC")
Decision_Fit
##################################
# K-nearest neighbour classifier #
##################################
#Train the model
model_knn = caret::train(Country ~ ., data=train.data, method='knn',
tuneLength = tuneLength, metric=metric,
trControl = fitControl,
tuneGrid = expand.grid(k = seq(1, 101, by = 2)))
model_knn
#############################
# Neural Network Classifier #
#############################
Neural_Fit <- train(Country ~ ., data =train.data, method = "nnet", trControl = fitControl, tuneLength = tuneLength, metric = "ROC")
Neural_Fit
Predict the models against the test data
#####
#LDA#
#####
pred_LDA = predict(lda.fit.CV, test.data, type="prob")
pred_LDA
######################################
# Stochastic Boosted Gradient Trees #
#####################################
## Stochastic Boosted Gradient Trees: model 1
#Predict the model with the test data
pred_model_Tree1 = predict(gbmFit1, newdata = test.data, type = "prob")
pred_model_Tree1
## Stochastic Boosted Gradient Trees: model 1
pred_model_Tree1$evaluation <- names(pred_model_Tree1)[apply(pred_model_Tree1, 1, which.max)]
pred_model_Tree1$evaluation
table(pred_model_Tree1$evaluation)
#Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_model_Tree1$evaluation, levels = unique(test.data$Country)),
factor(test.data$Country, levels = unique(test.data$Country)))
#Predict the model with the test data
pred_model_Tree2 = predict(gbmFit2, newdata = test.data, type = "prob")
pred_model_Tree2
## Stochastic Boosted Gradient Trees: model 2
pred_model_Tree2$evaluation <- names(pred_model_Tree2)[apply(pred_model_Tree2, 1, which.max)]
pred_model_Tree2$evaluation
#########################################
# Bagged Flexible Discriminant Analysis #
########################################
#Predict the bagged flexible discriminate model with the test data
Earth_fitted <- predict(model_mars, newdata = test.data, type = "prob")
Earth_fitted
Earth_fitted$evaluation <- names(Earth_fitted)[apply(Earth_fitted, 1, which.max)]
Earth_fitted$evaluation
###############################
# Single Vector Machine (SVM) #
###############################
#Predict the random forest model with the test data
SVM_fitted <- predict(model_svmRadial, newdata = test.data, type = "prob")
SVM_fitted
#Evaluate the predictions
SVM_fitted$evaluation <- names(SVM_fitted)[apply(SVM_fitted, 1, which.max)]
SVM_fitted$evaluation
###############################################
# Recursive Partitioning Classification Trees #
##############################################
#Predict the random forest model with the test data
rpart_fitted <- predict(dt.rpart, newdata = test.data, type = "prob")
rpart_fitted
#produce a dataframe
rpart_fit<-as.data.frame(rpart_fitted)
rpart_fit
#Evaluate the predictions
rpart_fit$evaluation <- factor(max.col(rpart_fit[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
rpart_fit$evaluation
###############
# Naïve Bayes #
#############
#Predict the model with probabilities
predict.nb<-predict(model.nb$finalModel, newdata = test.data, type = "prob")
predict.nb
#Predict the model with the classes
pedict.class.nb<-predict(model.nb$finalModel, newdata = test.data, type = "prob")$class
pedict.class.nb
#Unlist the results as the function table() and confusionMatrix do not recognize lists
unlist.predicted.nb.Country <-unlist(predict.nb$class)
unlist.predicted.nb.Country
unlist.predicted.nb.posterior <-unlist(predict.nb$posterior)
unlist.predicted.nb.posterior
#produce a dataframe
nb_fit<-as.data.frame(unlist.predicted.nb.posterior)
nb_fit
#Evaluate the predictions
nb_fit$evaluation <- factor(max.col(nb_fit[,1:3]), levels=1:3, labels=c(""France", "Spain", "Holland""))
nb_fit$evaluation
#################
# Random Forest #
################
#Now that we have generated a classification model
#Model Evaluation
pred_rf<-predict(model_rf, newdata = test.data, type = "prob")
pred_rf
#Evaluate the predictions
pred_rf$evaluation <- factor(max.col(pred_rf[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
pred_rf$evaluation
#####################################
# Regularized Discriminant Analysis #
#####################################
#Now that we have generated a classification model
#Model Evaluation
pred_rda<-predict(rdaFit, newdata = test.data, type = "prob")
pred_rda
#Evaluate the predictions
rdaFit $evaluation <- factor(max.col(pred_rda[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
rdaFit $evaluation
##################
# Decision Trees #
##################
#Now that we have generated a classification model
#Model Evaluation
pred_decision<-predict(Decision_Fit, newdata = test.data, type = "prob")
pred_decision
#Evaluate the predictions
pred_decision$evaluation <- factor(max.col(pred_decision[,1:3]), levels=1:3, labels = c(""France", "Spain", "Holland""))
pred_decision$evaluation
#########################
# knn nearest neighbour #
########################
#Now that we have generated a classification model
#Model Evaluation
pred_knn<-predict(model_knn, newdata = test.data, type = "prob")
pred_knn
#Evaluate the predictions
pred_knn$evaluation <- factor(max.col(pred_knn[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
pred_knn$evaluation
##################
# Neural Network #
##################
#Now that we have generated a classification model
#Model Evaluation
pred_net<-predict(Neural_Fit, newdata = test.data, type = "prob")
pred_net
#Evaluate the predictions
pred_net$evaluation <- factor(max.col(pred_net[,1:3]), levels=1:3, labels = c("France", "Spain", "Holland"))
pred_net$evaluation
#Contingency table of predictions
table(pred_net$evaluation)
#Now you can print the confusionMatrix (make sure each factor has the same levels)
confusionMatrix(factor(pred_net$evaluation, levels = unique(test.data$Country)),
Produce the multi.roc() objects using the library pROC
library(pROC) # Compute roc
library(ROCR)
library(MASS)
library(caret)
#LDA
roc_LDA <- multiclass.roc(test.data$Country, pred_LDA, levels=c("France", "Spain", "Holland"))
roc_LDA
#Boosted Tree model 1
roc_Tree1 <- multiclass.roc(test.data$Country, pred_model_Tree1[1:3], levels=c("France", "Spain", "Holland"))
roc_Tree1
#Boosted Tree model 2
roc_Tree2 <- multiclass.roc(test.data$Country, pred_model_Tree2[1:3], levels=c("France", "Spain", "Holland"))
roc_Tree2
#Mars model
roc_Mars <- multiclass.roc(test.data$Country, Earth_fitted[1:3], levels=c("France", "Spain", "Holland"))
roc_Mars
#Single Vector Machine
roc_SVM <- multiclass.roc(test.data$Country, SVM_fitted[1:3], levels=c("France", "Spain", "Holland"))
roc_SVM
#Single Vector Machine
roc_RART <- multiclass.roc(test.data$Country, rpart_fitted, levels=c("France", "Spain", "Holland"))
roc_RART
#Naive Bayes
roc_nb <- multiclass.roc(test.data$Country, predict.nb$posterior, levels=c("France", "Spain", "Holland"))
roc_nb
#Single Vector Machine
roc_RPART <- multiclass.roc(test.data$Country, rpart_fitted, levels=c("France", "Spain", "Holland"))
roc_RPART
#Random Forest
roc_RF <- multiclass.roc(test.data$Country, pred_rf[1:3], levels=c("France", "Spain", "Holland"))
roc_RF
#Regularized Discriminant Analysis
roc_RDA <- multiclass.roc(test.data$Country, pred_rda, levels=c("France", "Spain", "Holland"))
roc_RDA
#Decision Trees
roc_Decision <- multiclass.roc(test.data$Country, pred_decision[1:3], levels=c("France", "Spain", "Holland"))
roc_Decision
#K nearest neighbour
roc_knn <- multiclass.roc(test.data$Country, pred_knn[1:3], levels=c("France", "Spain", "Holland"))
roc_knn
#Neural network
roc_net <- multiclass.roc(test.data$Country, pred_net[1:3], levels=c("France", "Spain", "Holland"))
roc_net
Function to plot the multiclass ROC curves
##Neural Network
Neural_Network <- roc_net[['rocs']]
print(Neural_Network)
plot.roc(Neural_Network[[1:2]], las=1, lwd=1.7, col = "black", xlab=" 1 - specificity")
#Nearest Neigbour
Knn <- roc_knn[['rocs']]
print(Knn)
plot.roc(Knn[[1:2]], add=TRUE, lwd=1.7, col = "red")
#LDA roc_LDA
LDA <- roc_LDA[['rocs']]
print(rs)
plot.roc(LDA[[1:2]], add=TRUE, lwd=1.7, col = "green")
#Boosted Tree 1
Boosted_Gradient1 <- roc_Tree1[['rocs']]
print(Boosted_Gradient1)
plot.roc(Boosted_Gradient1[[1:2]], add=TRUE, lwd=1.7, col = "#3300CC")
#Boosted Tree 2
Boosted_Gradient2 <- roc_Tree1[['rocs']]
print(Boosted_Gradient2)
plot.roc(Boosted_Gradient2[[1:2]], add=TRUE, lwd=1.7, col = "#CC66FF")
#Mars
MARS <- roc_Mars[['rocs']]
print(MARS)
plot.roc(MARS[[1:2]], add=TRUE, lwd=1.7, col = "#669933")
#Single Vector Machine
SVM <- roc_SVM[['rocs']]
print(SVM)
plot.roc(SVM[[1:2]], add=TRUE, lwd=1.7, col = "#FFFF00")
#Recursive partitioning
RPART <- roc_RPART[['rocs']]
print(RPART)
plot.roc(RPART[[1:2]], add=TRUE, lwd=1.7, col = "orange")
#Recursive partitioning
NaiveBayes <- roc_nb[['rocs']]
print(NaiveBayes)
plot.roc(NaiveBayes[[1:2]], add=TRUE, lwd=1.7, col = "cyan")
#Random Forest
Random_Forest <- roc_RF[['rocs']]
print(Random_Forest)
plot.roc(Random_Forest[[1:2]], add=TRUE, lwd=1.7, col = "magenta")
#Regularized discriminant analysis
RDA <- roc_RF[['rocs']]
print(RDA)
plot.roc(RDA [[1:2]], add=TRUE, lwd=1.7, col = "#33CC66")
#Regularized discriminant analysis
Decision_ROC <- roc_Decision[['rocs']]
print(Decision_ROC)
plot.roc(Decision_ROC[[1:2]], add=TRUE, lwd=1.7, col = "#3333FF")
#Decision Tree
Decision_Tree <- roc_Decision[['rocs']]
print(Decision_Tree)
plot.roc(Decision_Tree[[1:2]], add=TRUE, lwd=1.7, col = "#FF00CC")
#Neural Network
Neural_Network <- roc_net[['rocs']]
print(Neural_Network)
plot.roc(Neural_Network[[1:2]], add=TRUE, lwd=1.7, col = "#0000FF")
Add a legend
#Insert a legend
legend("bottomright", legend = c("Neural_Network: AUC = 0.9379", "Knn: AUC =0.9087", "LDA: AUC = 0.9012",
"Boosted Gradient 1: AUC = 0.9826", "Boosted_Gradient 2: AUC = 0.9641",
"MARS: AUC = 0.9458", "SVM: AUC = 0.9537", "Rpart: AUC = 0.9077", "NaiveBayes: AUC = 0.8951",
"Random_Forest: AUC = 0.9876", "RDA: AUC = 0.8982", "Decision Tree: AUC = 0.9832",
"Neural Network: AUC = 0.9379"),
lty = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
col =c("black", "red", "green", "#3300CC", "#CC66FF",
"#669933", "#FFFF00", "orange", "cyan", "magenta", "#33CC66", "#3333FF",
"#FF00CC", "#0000FF"), cex=0.6, lwd=1.5, inset = 0.05,
title = "ROC Curves")
par(mfrow = c(1, 1))
ROC Curve Diagram