Given a list of distinct integers (decreasing order), return True if there is atleast position p, such that the value at position p is p. For instance, List = [4, 3, 2, 0], the function returns true since 2 is at index 2.
I know we can just go for a loop and check if list[i] == i.
I was wondering if and how this can be implemented with the divide and conquer algorithm?
My base cases are:
I am a bit confused how to divide the list here. Since splitting the list in 2, each list would have index [0:n/2]. So comparing the the values and index dont make sense.
Appreciate some help!
You only need to compare the starting and ending values of a list to the values in the list index to see if it's possible.
Code
def divide_conqueer(lst, indexes = None):
if indexes is None:
indexes = list(range(len(lst))) # create list index
if not lst:
return False
elif len(lst) == 1:
return lst[0] == indexes[0]
elif lst[0] < indexes[0] or lst[-1] > indexes[-1]:
# Compare values of beginning and end of the list to the
# list indexes of the beginnning and end
# There is a matching value to index only if beginning value >= starting index and
# ending value <= ending index
return False
else:
# Divide values and intervals in half and test each half
return (divide_conqueer(lst[:len(lst)//2], indexes[:len(indexes)//2]) or
divide_conqueer(lst[len(lst)//2:], indexes[len(indexes)//2:]))
Test
print(divide_conqueer([4, 3, 2, 1]))
# Output: True