Below are my two dataframes, df1 and df2
df1 <- data.frame(id=c("632592651","633322173","634703802","634927873","635812953","636004739","636101211","636157799","636263106","636752420"),text=c("asdf","cat","dog","mouse","elephant","goose","rat","mice","kitty","kitten"),response=c("y","y","y","n","n","y","y","n","n","y"))
id text response
1 632592651 asdf y
2 633322173 cat y
3 634703802 dog y
4 634927873 mouse n
5 635812953 elephant n
6 636004739 goose y
7 636101211 rat y
8 636157799 mice n
9 636263106 kitty n
10 636752420 kitten y
df2 <- data.frame(id=c("632592651","633322173","634703802","634927873","635812953","636004739","636101211","636157799","636263106","636752420","636809222","2004722036","2004894388","2005045755","2005535472","2005630542","2005788781","2005809679","2005838317","2005866692"),
text=c("asdf_xyz","cat","dog","mouse","elephant","goose","rat","mice","kitty","kitten","tiger_xyz","lion","leopard","ostrich","kangaroo","platypus","fish","reptile","mammals","amphibians_xyz"),
volume=c("1234","432","324","333","2223","412346","7456","3456","2345","2345","6","345","23","2","4778","234","8675","3459","8","9"))
id text volume
1 632592651 asdf_xyz 1234
2 633322173 cat 432
3 634703802 dog 324
4 634927873 mouse 333
5 635812953 elephant 2223
6 636004739 goose 412346
7 636101211 rat 7456
8 636157799 mice 3456
9 636263106 kitty 2345
10 636752420 kitten 2345
11 636809222 tiger_xyz 6
12 2004722036 lion 345
13 2004894388 leopard 23
14 2005045755 ostrich 2
15 2005535472 kangaroo 4778
16 2005630542 platypus 234
17 2005788781 fish 8675
18 2005809679 reptile 3459
19 2005838317 mammals 8
20 2005866692 amphibians_xyz 9
How do I change the non-matching items from row id1:20 of df2 to NA (i.e. all of them as no matching with df1) and the column 'text' (i.e. asdf_xyz) of id1 to NA?
I have tried
library(dplyr)
df3 <- df2 %>%
anti_join(df1, by=c("id"))
id text volume
1 636809222 tiger_xyz 6
2 2004722036 lion 345
3 2004894388 leopard 23
4 2005045755 ostrich 2
5 2005535472 kangaroo 4778
6 2005630542 platypus 234
7 2005788781 fish 8675
8 2005809679 reptile 3459
9 2005838317 mammals 8
10 2005866692 amphibians_xyz 9
df3$id[df3$id != 0] <- NA
df3$text[df3$text != 0] <- NA
df3$volume[df3$volume != 0] <- NA
(Doing this one by one because I couldn't find solution how to change the entire value of the dataframe to NA)
id text volume
1 <NA> <NA> <NA>
2 <NA> <NA> <NA>
3 <NA> <NA> <NA>
4 <NA> <NA> <NA>
5 <NA> <NA> <NA>
6 <NA> <NA> <NA>
7 <NA> <NA> <NA>
8 <NA> <NA> <NA>
9 <NA> <NA> <NA>
10 <NA> <NA> <NA>
and df4 (solution from How to return row values that match column 'id' in both df1 and df2 but not column 'text' and return NA to the mismatch in column 'text'?)
inner_join(x = df1,
y = df2,
by = "id") %>%
mutate_if(is.factor, as.character) %>%
mutate(text = ifelse(test = text.x != text.y,
yes = NA,
no = text.x)) %>%
select(id, text, response, volume)
id text response volume
1 632592651 <NA> y 1234
2 633322173 cat y 432
3 634703802 dog y 324
4 634927873 mouse n 333
5 635812953 elephant n 2223
6 636004739 goose y 412346
7 636101211 rat y 7456
8 636157799 mice n 3456
9 636263106 kitty n 2345
10 636752420 kitten y 2345
but not sure how to replace df2 with df3 and df4. The desired output is shown below:
id text volume
1 632592651 NA 1234
2 633322173 cat 432
3 634703802 dog 324
4 634927873 mouse 333
5 635812953 elephant 2223
6 636004739 goose 412346
7 636101211 rat 7456
8 636157799 mice 3456
9 636263106 kitty 2345
10 636752420 kitten 2345
11 NA NA NA
12 NA NA NA
13 NA NA NA
14 NA NA NA
15 NA NA NA
16 NA NA NA
17 NA NA NA
18 NA NA NA
19 NA NA NA
20 NA NA NA
Can someone help please? If possible, may I also know if there's a manual approach to select subset of df2 based on df3$id and change all values to NA?
Part 2:
For the second part of my request, I would like to create another dataframes from joined_df which appears only in df1 (call it found_in_df1). Example of output:
found_in_df1:
# id text volume
# 1: 632592651 <NA> 1234
# 2: 633322173 cat 432
# 3: 634703802 dog 324
# 4: 634927873 mouse 333
# 5: 635812953 elephant 2223
# 6: 636004739 goose 412346
# 7: 636101211 rat 7456
# 8: 636157799 mice 3456
# 9: 636263106 kitty 2345
#10: 636752420 kitten 2345
The solution is given in How to return row values that match column 'id' in both df1 and df2 but not column 'text' and return NA to the mismatch in column 'text'? but I'm looking for an alternative approach, i.e., is it possible to write a script to say retrieve from joined_df using df1 to give found_in_df1 since we have df1 and joined_df?
One potential solution for dealing with conflicts is to use the powerjoin package, e.g.
library(dplyr)
df1 <- data.frame(id=c("632592651","633322173","634703802","634927873","635812953","636004739","636101211","636157799","636263106","636752420"),
text=c("asdf","cat","dog","mouse","elephant","goose","rat","mice","kitty","kitten"),
response=c("y","y","y","n","n","y","y","n","n","y"))
df2 <- data.frame(id=c("632592651","633322173","634703802","634927873","635812953","636004739","636101211","636157799","636263106","636752420","636809222","2004722036","2004894388","2005045755","2005535472","2005630542","2005788781","2005809679","2005838317","2005866692"),
text=c("asdf_xyz","cat","dog","mouse","elephant","goose","rat","mice","kitty","kitten","tiger_xyz","lion","leopard","ostrich","kangaroo","platypus","fish","reptile","mammals","amphibians_xyz"),
volume=c(1234,432,324,333,2223,412346,7456,3456,2345,2345,6,345,23,2,4778,234,8675,3459,8,9))
expected_outcome <- data.frame(id = c("632592651","633322173","634703802","634927873","635812953","636004739","636101211","636157799","636263106","636752420",
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
text = c(NA, "cat", "dog", "mouse", "elephant", "goose",
"rat", "mice", "kitty", "kitten",
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA),
volume = c(1234, 432, 324, 333, 2223, 412346, 7456,
3456, 2345, 2345, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA))
library(powerjoin)
joined_df <- power_full_join(df1, df2, by = c("id"),
conflict = rw ~ ifelse(.x != .y,
NA_integer_,
.x))
final_df <- joined_df %>%
mutate(across(everything(), ~ifelse(is.na(response), NA, .x))) %>%
select(id, text, volume)
final_df
#> id text volume
#> 1 632592651 <NA> 1234
#> 2 633322173 cat 432
#> 3 634703802 dog 324
#> 4 634927873 mouse 333
#> 5 635812953 elephant 2223
#> 6 636004739 goose 412346
#> 7 636101211 rat 7456
#> 8 636157799 mice 3456
#> 9 636263106 kitty 2345
#> 10 636752420 kitten 2345
#> 11 <NA> <NA> NA
#> 12 <NA> <NA> NA
#> 13 <NA> <NA> NA
#> 14 <NA> <NA> NA
#> 15 <NA> <NA> NA
#> 16 <NA> <NA> NA
#> 17 <NA> <NA> NA
#> 18 <NA> <NA> NA
#> 19 <NA> <NA> NA
#> 20 <NA> <NA> NA
all_equal(final_df, expected_outcome)
#> [1] TRUE
# Part 2
found_in_df1 <- power_left_join(df1, df2, by = c("id"),
conflict = rw ~ ifelse(.x != .y,
NA_integer_,
.x)) %>%
select(id, text, volume)
found_in_df1
#> id text volume
#> 1 632592651 <NA> 1234
#> 2 633322173 cat 432
#> 3 634703802 dog 324
#> 4 634927873 mouse 333
#> 5 635812953 elephant 2223
#> 6 636004739 goose 412346
#> 7 636101211 rat 7456
#> 8 636157799 mice 3456
#> 9 636263106 kitty 2345
#> 10 636752420 kitten 2345
Created on 2022-07-02 by the reprex package (v2.0.1)
Per the comment below from the creator of the powerjoin package (Mr. Mudskipper): these operations are vectorised, so you don't need to perform the command 'rowwise', i.e. you can remove "rw" to simplify and gain performance. There is no practical difference between including and excluding "rw" with df1 and df2, but if we use larger dataframes you can see a clear increase in performance, e.g.
library(dplyr)
library(powerjoin)
# define functions
power_full_join_func_rowwise <- function(df1, df2) {
joined_df <- power_full_join(df1, df2, by = c("id"),
conflict = rw ~ ifelse(.x != .y,
NA_integer_,
.x))
final_df <- joined_df %>%
mutate(across(everything(), ~ifelse(is.na(response), NA, .x))) %>%
select(id, text, volume)
return(final_df)
}
power_full_join_func_not_rowwise <- function(df1, df2) {
joined_df <- power_full_join(df1, df2, by = c("id"),
conflict = ~ifelse(.x != .y,
NA_integer_,
.x))
final_df <- joined_df %>%
mutate(across(everything(), ~ifelse(is.na(response), NA, .x))) %>%
select(id, text, volume)
return(final_df)
}
library(microbenchmark)
library(purrr)
library(ggplot2)
# make larger dfs (copy df1 and df2 X100)
df3 <- map_dfr(seq_len(100), ~ df1)
df4 <- map_dfr(seq_len(100), ~ df2)
# benchmark performance on the larger dataframes
res <- microbenchmark(power_full_join_func_rowwise(df3, df4),
power_full_join_func_not_rowwise(df3, df4))
res
#> Unit: milliseconds
#> expr min lq mean
#> power_full_join_func_rowwise(df3, df4) 397.32661 426.08117 449.88787
#> power_full_join_func_not_rowwise(df3, df4) 71.85757 77.25344 90.36191
#> median uq max neval cld
#> 446.41715 472.47817 587.3301 100 b
#> 81.18239 93.95103 191.1248 100 a
autoplot(res)
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
# Is the result the same?
all_equal(power_full_join_func_rowwise(df3, df4),
power_full_join_func_not_rowwise(df3, df4))
#> [1] TRUE
Created on 2022-11-24 by the reprex package (v2.0.1)