Following up to a previous question I asked in Fixing parameters of a fitting function in Nonlinear Least-Square GSL (successfully answered by @zkoza), I would like to implement an algorithm that can fit data to a non-linear function, by fixing some of its parameters while leaving other parameters to change for finding the best fit to the data. The difference to my previous question is that I want to have two independent variables instead of one independent variable.
Non-linear function used to fit the data
double gaussian(double x, double b, double a, double c)
{
const double z = (x - b) / c;
return a * std::exp(-0.5 * z * z);
}
In my previous question I was considering that x
was the only independent variable
. Now I would like to consider two independent variables, x
and b
.
The original algorithm used to fit a non-linear function using only one independent variable
(while fixing variable a
) is a C++ wrapper of the GSL nonlinear least-squares algorithm (borrowed from https://github.com/Eleobert/gsl-curve-fit/blob/master/example.cpp):
template <typename F, size_t... Is>
auto gen_tuple_impl(F func, std::index_sequence<Is...> )
{
return std::make_tuple(func(Is)...);
}
template <size_t N, typename F>
auto gen_tuple(F func)
{
return gen_tuple_impl(func, std::make_index_sequence<N>{} );
}
template <class R, class... ARGS>
struct function_ripper {
static constexpr size_t n_args = sizeof...(ARGS);
};
template <class R, class... ARGS>
auto constexpr n_params(R (ARGS...) )
{
return function_ripper<R, ARGS...>();
}
auto internal_solve_system(gsl_vector* initial_params, gsl_multifit_nlinear_fdf *fdf,
gsl_multifit_nlinear_parameters *params) -> std::vector<double>
{
// This specifies a trust region method
const gsl_multifit_nlinear_type *T = gsl_multifit_nlinear_trust;
const size_t max_iter = 200;
const double xtol = 1.0e-8;
const double gtol = 1.0e-8;
const double ftol = 1.0e-8;
auto *work = gsl_multifit_nlinear_alloc(T, params, fdf->n, fdf->p);
int info;
// initialize solver
gsl_multifit_nlinear_init(initial_params, fdf, work);
//iterate until convergence
gsl_multifit_nlinear_driver(max_iter, xtol, gtol, ftol, nullptr, nullptr, &info, work);
// result will be stored here
gsl_vector * y = gsl_multifit_nlinear_position(work);
auto result = std::vector<double>(initial_params->size);
for(int i = 0; i < result.size(); i++)
{
result[i] = gsl_vector_get(y, i);
}
auto niter = gsl_multifit_nlinear_niter(work);
auto nfev = fdf->nevalf;
auto njev = fdf->nevaldf;
auto naev = fdf->nevalfvv;
// nfev - number of function evaluations
// njev - number of Jacobian evaluations
// naev - number of f_vv evaluations
//logger::debug("curve fitted after ", niter, " iterations {nfev = ", nfev, "} {njev = ", njev, "} {naev = ", naev, "}");
gsl_multifit_nlinear_free(work);
gsl_vector_free(initial_params);
return result;
}
template<auto n>
auto internal_make_gsl_vector_ptr(const std::array<double, n>& vec) -> gsl_vector*
{
auto* result = gsl_vector_alloc(vec.size());
int i = 0;
for(const auto e: vec)
{
gsl_vector_set(result, i, e);
i++;
}
return result;
}
template<typename C1>
struct fit_data
{
const std::vector<double>& t;
const std::vector<double>& y;
// the actual function to be fitted
C1 f;
};
template<typename FitData, int n_params>
int internal_f(const gsl_vector* x, void* params, gsl_vector *f)
{
auto* d = static_cast<FitData*>(params);
// Convert the parameter values from gsl_vector (in x) into std::tuple
auto init_args = [x](int index)
{
return gsl_vector_get(x, index);
};
auto parameters = gen_tuple<n_params>(init_args);
// Calculate the error for each...
for (size_t i = 0; i < d->t.size(); ++i)
{
double ti = d->t[i];
double yi = d->y[i];
auto func = [ti, &d](auto ...xs)
{
// call the actual function to be fitted
return d->f(ti, xs...);
};
auto y = std::apply(func, parameters);
gsl_vector_set(f, i, yi - y);
}
return GSL_SUCCESS;
}
using func_f_type = int (*) (const gsl_vector*, void*, gsl_vector*);
using func_df_type = int (*) (const gsl_vector*, void*, gsl_matrix*);
using func_fvv_type = int (*) (const gsl_vector*, const gsl_vector *, void *, gsl_vector *);
template<auto n>
auto internal_make_gsl_vector_ptr(const std::array<double, n>& vec) -> gsl_vector*;
auto internal_solve_system(gsl_vector* initial_params, gsl_multifit_nlinear_fdf *fdf,
gsl_multifit_nlinear_parameters *params) -> std::vector<double>;
template<typename C1>
auto curve_fit_impl(func_f_type f, func_df_type df, func_fvv_type fvv, gsl_vector* initial_params, fit_data<C1>& fd) -> std::vector<double>
{
assert(fd.t.size() == fd.y.size());
auto fdf = gsl_multifit_nlinear_fdf();
auto fdf_params = gsl_multifit_nlinear_default_parameters();
fdf.f = f;
fdf.df = df;
fdf.fvv = fvv;
fdf.n = fd.t.size();
fdf.p = initial_params->size;
fdf.params = &fd;
// "This selects the Levenberg-Marquardt algorithm with geodesic acceleration."
fdf_params.trs = gsl_multifit_nlinear_trs_lmaccel;
return internal_solve_system(initial_params, &fdf, &fdf_params);
}
template <typename Callable, auto n>
auto curve_fit(Callable f, const std::array<double, n>& initial_params, const std::vector<double>& x, const std::vector<double>& y) -> std::vector<double>
{
// We can't pass lambdas without convert to std::function.
//constexpr auto n = 3;//decltype(n_params(f))::n_args - 5;
//constexpr auto n = 2;
assert(initial_params.size() == n);
auto params = internal_make_gsl_vector_ptr(initial_params);
auto fd = fit_data<Callable>{x, y, f};
return curve_fit_impl(internal_f<decltype(fd), n>, nullptr, nullptr, params, fd);
}
In order to fix one of the parameters of the gaussian function, @zkoza proposed to use functors
:
struct gaussian_fixed_a
{
double a;
gaussian_fixed_a(double a) : a{a} {}
double operator()(double x, double b, double c) const { return gaussian(x, b, a, c); }
};
And these last lines show how I would create a fake dataset of observed data (with some noise which is normally distributed) and test the fitting curve function with two independent variables, given by the vectors xs
and bs
.
int main()
{
auto device = std::random_device();
auto gen = std::mt19937(device());
auto xs = linspace<std::vector<double>>(0.0, 1.0, 300);
auto bs = linspace<std::vector<double>>(0.4, 1.4, 300);
auto ys = std::vector<double>(xs.size());
double a = 5.0, c = 0.15;
for(size_t i = 0; i < xs.size(); i++)
{
auto y = gaussian(xs[i], a, bs[i], c);
auto dist = std::normal_distribution(0.0, 0.1 * y);
ys[i] = y + dist(gen);
}
gaussian_fixed_a g(a);
auto r = curve_fit(g, std::array{0.11}, xs, bs, ys);
std::cout << "result: " << r[0] << ' ' << '\n';
std::cout << "error : " << r[0] - c << '\n';
}
Do you have any idea on how I could implement the two-independent variables
non-linear fitting?
The solution, as suggested in the comments by @BenVoigt, is to replace the x
and b
independent variables in the gaussian function with 'one independent variable' given as a vector, whose first element is x
and the second element is b
.
Also the backbone of the nonlinear fitting needs to be slightly edited. The edits consist:
Replace the fit_data
functor with:
struct fit_data
{
const std::vector< vector<double> > &t;
const std::vector<double>& y;
// the actual function to be fitted
C1 f;
};
Such that, the independent variable is no longer a vector
but rather a vector of a vector
(aka a matrix
).
internal_f
.a) double ti = d->t[i]
with std::vector<double> ti = d->t[i]
b) auto func = [ti, &d](auto ...xs)
with auto func = [ti, &d](auto ...xs_matrix)
c) return d->f(ti, xs...)
with return d->f(ti, xs_matrix...)
curve_fit
function:a) const std::vector<double>& x
with const std::vector< vector<double> > &xs_matrix
b) auto fd = fit_data<Callable>{x, y, f}
with auto fd = fit_data<Callable>{xs_matrix, y, f}
Whereas the gaussian
function, gaussian_fixed_a
functor and the fitting function looks like:
double gaussian(std::vector<double> x_vector, double a, double c)
{
const double z = (x_vector[0] - x_vector[1]) / c;
return a * std::exp(-0.5 * z * z);
}
struct gaussian_fixed_a
{
double a;
gaussian_fixed_a(double a) : a{a} {}
double operator()(std::vector<double> x_vector, double c) const { return gaussian(x_vector, a, c); }
};
double fittingTest(const std::vector< vector<double> > &xs_matrix, const std::vector<double> ys, const double a){
gaussian_fixed_a g(a);
auto r = curve_fit(g, std::array{3.0}, xs_matrix, ys);
return r[0]);
}