i really like the look of the vega Word Clouds: https://vega.github.io/vega/examples/word-cloud/
I'm currently using the spec from the link as follows in colab:
spec = "insert spec here"
#Option one:
from altair import vega
vega.renderers.enable('colab')
vega.Vega(spec)
#Option two:
import panel as pn
from vega import Vega
pn.extension('vega')
pn.pane.Vega(spec)
But actually i want to make faceted wordclouds with vega. I currently load my data as json from my github account which is also slightly annoying, but i found no way to reference python variables in the vega spec. Does anyone maybe have a hint, how i could layout the vega wordcloud in a grid by groups specified in my data? My json has this structure: [{"text":text,"group":group}], drawing the wordclouds from this works, but not the faceting by the group field. I know vega-lite can do faceting, but it can't draw the beautiful wordcloud it seems.
Thanks for any help!
Here is a working example of Vega spec using facet with your data.
For illustration only, the formula field for angle places words with larger field size in horizontal position.
{
"$schema": "https://vega.github.io/schema/vega/v5.json",
"description": "A word cloud visualization depicting Vega research paper abstracts.",
"title": "A Wordcloud",
"width": 400,
"height": 400,
"padding": 10,
"background": "ghostwhite",
"layout": {
"bounds": "flush",
"columns": 2,
"padding": 10
},
"data": [
{
"name": "table",
"url": "https://raw.githubusercontent.com/nyanxo/vega_facet_wordcloud/main/split.json",
"transform": [
{
"type": "formula",
"as": "angle",
"expr": "datum.size >= 3 ? 0 : [-45,-30, -15, 0, 15, 30, 45][floor(random() * 7)]"
}
]
}
],
"scales": [
{
"name": "color",
"type": "ordinal",
"domain": {"data": "table", "field": "text_split"},
"range": ["#d5a928", "#652c90", "#939597"]
}
],
"marks": [
{
"type": "group",
"from": {
"facet": {
"name": "facet",
"data": "table",
"groupby": "group"
}
},
"title": {
"text": {"signal": "parent.group"},
"frame": "group"
},
"encode": {
"update": {
"width": {"signal": "width"},
"height": {"signal": "height"}
}
},
"marks": [
{
"type": "rect",
"encode": {
"enter": {
"x": {"value": 0},
"width": {"signal": "width" },
"y": {"value": 0},
"height": {"signal": "height"},
"fill": {"value": "beige"}
}
}
},
{
"type": "text",
"from": {"data": "facet"},
"encode": {
"enter": {
"text": {"field": "text_split"},
"align": {"value": "center"},
"baseline": {"value": "alphabetic"},
"fill": {"scale": "color", "field": "text_split"}
},
"update": {"fillOpacity": {"value": 1}},
"hover": {"fillOpacity": {"value": 0.5}}
},
"transform": [
{
"type": "wordcloud",
"size": {"signal": "[width, height]"},
"text": {"field": "text_split"},
"rotate": {"field": "datum.angle"},
"font": "Helvetica Neue, Arial",
"fontSize": {"field": "datum.size"},
"fontSizeRange": [12, 28],
"padding": 2
}
]
}
]
}
]
}