With the PromiseKit library, it’s possible to create a promise and a resolver function together and store them on an instance of a class:
class ExampleClass {
// Promise and resolver for the top news headline, as obtained from
// some web service.
private let (headlinePromise, headlineSeal) = Promise<String>.pending()
}
Like any promise, we can chain off of headlinePromise
to do some work once the value is available:
headlinePromise.get { headline in
updateUI(headline: headline)
}
// Some other stuff here
Since the promise has not been resolved yet, the contents of the get
closure will be enqueued somewhere and control will immediately move to the “some other stuff here” section; updateUI
will not be called unless and until the promise is resolved.
To resolve the promise, an instance method can call headlineSeal
:
makeNetworkRequest("https://news.example/headline").get { headline in
headlineSeal.fulfill(headline)
}
The promise is now resolved, and any promise chains that had been waiting for headlinePromise
will continue. For the rest of the life of this ExampleClass instance, any promise chain starting like
headlinePromise.get { headline in
// ...
}
will immediately begin executing. (“Immediately” might mean “right now, synchronously,” or it might mean “on the next run of the event loop”; the distinction isn’t important for me here.) Since promises can only be resolved once, any future calls to headlineSeal.fulfill(_:)
or headlineSeal.reject(_:)
will be no-ops.
How can this pattern be translated idiomatically into Swift concurrency (“async/await”)? It’s not important that there be an object called a “promise” and a function called a “resolver”; what I’m looking for is a setup that has the following properties:
I think that some of these can be accomplished by storing an instance variable
private let headlineTask: Task<String, Error>
and then waiting for the value with
let headline = try await headlineTask.value
but I’m not sure how that Task
should be initialized or how it should be “fulfilled.”
Here is a way to reproduce a Promise
which can be awaited by multiple consumers and fulfilled by any synchronous code:
public final class Promise<Success: Sendable>: Sendable {
typealias Waiter = CheckedContinuation<Success, Never>
struct State {
var waiters = [Waiter]()
var result: Success? = nil
}
private let state = ManagedCriticalState(State())
public init(_ elementType: Success.Type = Success.self) { }
@discardableResult
public func fulfill(with value: Success) -> Bool {
return state.withCriticalRegion { state in
if state.result == nil {
state.result = value
for waiters in state.waiters {
waiters.resume(returning: value)
}
state.waiters.removeAll()
return false
}
return true
}
}
public var value: Success {
get async {
await withCheckedContinuation { continuation in
state.withCriticalRegion { state in
if let result = state.result {
continuation.resume(returning: result)
} else {
state.waiters.append(continuation)
}
}
}
}
}
}
extension Promise where Success == Void {
func fulfill() -> Bool {
return fulfill(with: ())
}
}
The ManagedCriticalState
type can be found in this file from the SwiftAsyncAlgorithms package.
I think I got the implementation safe and correct but if someone finds an error I'll update the answer. For reference I got inspired by AsyncChannel
and this blog post.
You can use it like this:
@main
enum App {
static func main() async throws {
let promise = Promise(String.self)
// Delayed fulfilling.
let fulfiller = Task.detached {
print("Starting to wait...")
try await Task.sleep(nanoseconds: 2_000_000_000)
print("Promise fulfilled")
promise.fulfill(with: "Done!")
}
let consumer = Task.detached {
await (print("Promise resolved to '\(promise.value)'"))
}
// Launch concurrent consumer and producer
// and wait for them to complete.
try await fulfiller.value
await consumer.value
// A promise can be fulfilled only once and
// subsequent calls to `.value` immediatly return
// with the previously resolved value.
promise.fulfill(with: "Ooops")
await (print("Promise still resolved to '\(promise.value)'"))
}
}
In Swift Concurrency, the high-level Task
type resembles a Future/Promise (it can be awaited and suspends execution until resolved) but the actual resolution cannot be controlled from the outside: one must compose built-in lower-level asynchronous functions such as URLSession.data()
or Task.sleep()
.
However, Swift Concurrency provides a (Checked|Unsafe)Continuation
type which basically act as a Promise resolver. It is a low-lever building block which purpose is to migrate regular asynchronous code (callback-based for instance) to the Swift Concurrency world.
In the above code, continuations are created by the consumers (via the .value
property) and stored in the Promise
. Later, when the result is available the stored continuations are fulfilled (with .resume()
), which resumes the execution of the consumers. The result is also cached so that if it is already available when .value
is called it is directly returned to the called.
When a Promise
is fulfilled multiple times, the current behavior is to ignore subsequent calls and to return aa boolean value indicating if the Promise
was already fulfilled. Other API's could be used (a trap, throwing an error, etc.).
The internal mutable state of the Promise
must be protected from concurrent accesses since multiple concurrency domains could try to read and write from it at the same time. This is achieve with regular locking (I believe this could have been achieved with an actor
, though).