I would like someone to suggest a faster way complete the following steps:
orig_df
, generate unique combination of variables.cbind
the new variables to orig_df
.My real data frame contains anywhere from 1,000 to 5,000 variables (columns) so my current code on my real world data frames is quite slow as the combination of variables grows significantly as the number of original variables increases. For the sake of simplicity, I have included a reprex data frame with 24 variables.
library(tidyverse)
library(data.table)
## reprex data
orig_df <- structure(list(name1 = c("a", "a", "a", "a", "a", "a", "a", "a",
"a", "a"), name2 = c("b", "b", "b", "b", "b", "b", "b", "b",
"b", "b"), a1 = c(2.02914670105014, 3.4823452794778, 2.10650327936948,
2.60655830350524, 1.96007832755073, 2.20319900226866, 2.2695046408281,
2.21424994202857, 2.28331831552798, 2.7281186408642), a2 = c(2.34996652741376,
3.70095020360926, 2.23917726097417, 1.78633957970163, 2.2069085425937,
2.50808324747805, 2.10149739588418, 2.40052085287649, 2.15312734529292,
2.26983254343561), a3 = c(2.29236552982738, 3.89205794602908,
2.00332958161127, 2.24914520112217, 2.53007733770606, 2.71754551346492,
2.0114333932435, 2.86503488517146, 2.24698418468691, 2.01899695076691
), a4 = c(3.41316237098706, 4.74677617124502, 2.16724250299177,
2.69085298208423, 2.92152132542834, 2.77166460573895, 2.11240604408321,
3.69400496418272, 2.60149397515834, 2.55143073028433), a5 = c(181,
153, 157, 164, 186, 160, 189, 184, 156, 144), a6 = c(109.505743217992,
124.993679689496, 118.331551171713, 121.149943117191, 117.845938184937,
116.653468860762, 115.497212844565, 119.598619239394, 118.71099689067,
119.980353824938), a7 = c(97.9342963550266, 101.648325143684,
95.6506939872352, 99.3679362781565, 96.8558088142306, 97.807547332176,
95.8501286576493, 97.0383412710708, 97.2285616820599, 96.4837667978641
), a8 = c(82.9441585205545, 141.582901736505, 141.917096237054,
133.01571492792, 139.3097949682, 159.139671804723, 135.367408753504,
146.93593535641, 142.989812366132, 153.648429482203), a9 = c(207.440039573019,
226.64200483318, 213.982245158948, 220.517879395348, 214.701746999167,
214.461016192938, 211.347341502214, 216.636960510465, 215.939558572729,
216.464120622803), a10 = c(42, 52.475, 52.475, 49.475, 52.475,
46.475, 52.475, 49.475, 49.475, 52.475), a11 = c(86.47, 98.01,
93.23, 97.06, 94.23, 89.82, 92.05, 92.34, 97.02, 94.53), a12 = c(161.545,
179.1775, 166.61, 170.9975, 166.35, 164.6125, 161.65, 171.7475,
169.29, 170.7975), a13 = c(299.982, 317.99, 300.538, 311.906,
305.2085, 306.263, 299.855, 305.34, 304.7145, 304.223), a14 = c(44.09,
88.66, 57.84, 78.75, 73.51, 64.51, 88.59, 74.5, 77.84, 84.08),
a15 = c(79.08097, 90.1388, 85.24364, 84.78847, 84.34771,
84.42352, 83.96158, 85.82465, 83.3913, 86.80556), a16 = c(26.6,
38.35, 35.075, 34.075, 34.7125, 30.075, 35.35, 32.7125, 33.7125,
37.35), a17 = c(61.3, 73.15, 70.45, 69.45, 69, 68.45, 70.15,
68, 68, 72.15), a18 = c(120.55, 130.45, 121.25, 123, 122.5,
122, 122.45, 124.5, 122.5, 126.45), a19 = c(156.35, 166.7,
157.4, 157.4, 158, 158.4, 156.7, 159, 158, 157.7), a20 = c(211,
225.35, 212.425, 214.425, 218.15, 216.425, 211, 220.15, 215.15,
214), a21 = c(292.221, 304.44, 284.18, 288.88, 293.07, 289.45,
284.98, 297.26, 289.5, 289.45), a22 = c(113.40921, 128.19039,
120.84558, 120.76845, 119.74005, 120.69014, 120.43093, 121.66397,
118.77983, 123.26633)), row.names = c(NA, -10L), class = c("data.table",
"data.frame"))
rankBy <- names(orig_df)[-c(1:2)]
## STEP 1:
## variable combination step (need to use "rankBy" vector because real df contains variables that are not used in the combination step)
colsToMultiply <- orig_df %>%
dplyr::select(all_of(rankBy)) %>%
names() %>%
data.frame()
originalCols <- colsToMultiply ## vector of original column names
colsToMultiply <- expand.grid(colsToMultiply$., colsToMultiply$.)
colsToMultiply <- colsToMultiply %>%
dplyr::mutate_all(~as.character(.))
colsToMultiply$dups <- apply(colsToMultiply[,1:ncol(colsToMultiply)], 1, function(i) any(duplicated(i, incomparables = NA)))
colsToMultiply <- colsToMultiply[!colsToMultiply$dups, ]
colsToMultiply <- colsToMultiply[,-c(ncol(colsToMultiply))]
colsToMultiply <- colsToMultiply[!duplicated(t(apply(colsToMultiply[,c(1:ncol(colsToMultiply))], 1, sort))), ] # remove: a,b ; b,a duplicates row wise
## split cols into chunks (easier on memory)
chunks <- 100
n <- nrow(colsToMultiply)
r <- rep(1:ceiling(n/chunks),each=chunks)[1:n]
colgridRunList <- split(colsToMultiply, r)
rm(list = setdiff(ls(), c("orig_df","colgridRunList","rankBy")))
gc()
## STEP 2:
## here we ADD or MULTIPLY two variables (columns) and cbind the new variable to original dataframe
orig_df <- setDT(orig_df)
newVarsList <- vector("list", length = length(colgridRunList))
for (x in seq_along(colgridRunList)) {
colgrid <- colgridRunList[[x]]
colList <- vector("list", length = nrow(colgrid))
for (i in 1:nrow(colgrid)) {
colselect1 <- colgrid[i,1]
colselect2 <- colgrid[i,2]
colname <- paste0(colselect1,"*",colselect2)
new_var <- orig_df[,..colselect1] * orig_df[,..colselect2]
colnames(new_var)[1] <- colname
colList[[i]] <- new_var
}
colList <- do.call(cbind, colList)
newVarsList[[x]] <- colList
}
newVarsList <- do.call(cbind,newVarsList)
orig_df <- cbind(orig_df, newVarsList)
rm(list = setdiff(ls(), c("orig_df")))
gc()
Instead of creating extra combinations and then removing those and its mirror copies, it may be easier with combn
library(dplyr)
library(purrr)
sub_df <- orig_df %>%
select(all_of(rankBy))
out <- combn(sub_df, 2, FUN = function(x) x %>%
reduce(`*`))
colnames(out) <- combn(names(sub_df), 2, FUN = paste, collapse = "*")
-testing
> dim(out)
[1] 10 231
> dim(newVarsList)
[1] 10 231
> out[, "a14*a20"]
[1] 9302.99 19979.53 12286.66 16885.97 16036.21 13961.58 18692.49 16401.17 16747.28 17993.12
> newVarsList[["a20*a14"]]
[1] 9302.99 19979.53 12286.66 16885.97 16036.21 13961.58 18692.49 16401.17 16747.28 17993.12
On the example data itself, it is faster with combn
> library(microbenchmark)
> microbenchmark(old = old_fn(), new = new_fn())
Unit: milliseconds
expr min lq mean median uq max neval cld
old 191.41567 207.43176 215.95941 212.13270 215.19806 547.4069 100 b
new 71.99214 76.53548 83.51679 79.47683 84.58893 209.6556 100 a