image-processingfftconvolutionkissfft

FFT Convolution - Really low PSNR


I'm convoluting an image (512*512) with a FFT filter (kernelsize=10), it looks good.

But when I compare it with an image which I convoluted the normal way the result was horrible.
The PSNR is about 35.

67,187/262,144 Pixel values have a difference of 1 or more(peak at ~8) (having a max pixel value of 255).

My question is, is it normal when convoluting in frequency space or might there be a problem with my convolution/transforming functions? . Because the strange thing is that I should get better results when using double as data-type. But it stays COMPLETELY the same.

When I transform an image into frequency space, DON'T convolute it, then transform it back it's fine and the PSNR is about 140 when using float.

Also, due to the pixel differences being only 1-10 I think I can rule out scaling errors

EDIT: More Details for bored interested people

I use the open source kissFFT library. With real 2dimensional input (kiss_fftndr.h)

My Image Datatype is PixelMatrix. Simply a matrix with alpha, red, green and blue values from 0.0 to 1.0 float

My kernel is also a PixelMatrix.

Here some snippets from the Convolution function

Used datatypes:

#define kiss_fft_scalar float
#define kiss_fft_cpx struct {
    kiss_fft_scalar r;
    kiss_fft_scalar i,
}

Configuration of the FFT:

//parameters to kiss_fftndr_alloc:
//1st param = array with the size of the 2 dimensions (in my case dim={width, height})
//2nd param = count of the dimensions (in my case 2)
//3rd param = 0 or 1 (forward or inverse FFT)
//4th and 5th params are not relevant

kiss_fftndr_cfg stf = kiss_fftndr_alloc(dim, 2, 0, 0, 0);
kiss_fftndr_cfg sti = kiss_fftndr_alloc(dim, 2, 1, 0, 0);

Padding and transforming the kernel:

I make a new array:

kiss_fft_scalar kernel[width*height];

I fill it with 0 in a loop.

Then I fill the middle of this array with the kernel I want to use.
So if I would use a 2*2 kernel with values 1/4, 1/4, 1/4 and 1/4 it would look like

0 0 0 0 0 0
0 1/4 1/4 0
0 1/4 1/4 0
0 0 0 0 0 0

The zeros are padded until they reach the size of the image.

Then I swap the quadrants of the image diagonally. It looks like:

1/4 0 0 1/4
 0  0 0  0
 0  0 0  0
1/4 0 0 1/4

now I transform it: kiss_fftndr(stf, floatKernel, outkernel);

outkernel is declarated as 
kiss_fft_cpx outkernel= new kiss_fft_cpx[width*height]

Getting the colors into arrays:

kiss_fft_scalar *red = new kiss_fft_scalar[width*height];
kiss_fft_scalar *green = new kiss_fft_scalar[width*height];
kiss_fft-scalar *blue = new kiss_fft_scalar[width*height];

for(int i=0; i<height; i++) {
 for(int j=0; i<width; j++) {
  red[i*height+j] = input.get(j,i).getRed();  //input is the input image pixel matrix
  green[i*height+j] = input.get(j,i).getGreen();
  blue{i*height+j] = input.get(j,i).getBlue();
 }
}

Then I transform the arrays:

kiss_fftndr(stf, red, outred);
kiss_fftndr(stf, green, outgreen);
kiss_fftndr(stf, blue, outblue);      //the out-arrays are type kiss_fft_cpx*

The convolution:

What we have now:

They are both complex arrays

Now comes the convolution:

for(int m=0; m<til; m++) {
 for(int n=0; n<til; n++) {
  kiss_fft_scalar real = outcolor[m*til+n].r;      //I do that for all 3 arrys in my code!
  kiss_fft_scalar imag = outcolor[m*til+n].i;      //so I have realred, realgreen, realblue
  kiss_fft_scalar realMask = outkernel[m*til+n].r; // and imagred, imaggreen, etc.
  kiss_fft_scalar imagMask = outkernel[m*til+n].i;

  outcolor[m*til+n].r = real * realMask - imag * imagMask; //Same thing here in my code i
  outcolor[m*til+n].i = real * imagMask + imag * realMask; //do it with all 3 colors
 }
}

Now I transform them back:

kiss_fftndri(sti, outred, red);
kiss_fftndri(sti, outgreen, green);
kiss_fftndri(sti, outblue, blue);

and I create a new Pixel Matrix with the values from the color-arrays

PixelMatrix output;

for(int i=0; i<height; i++) {
 for(int j=0; j<width; j++) {
  Pixel p = new Pixel();
  p.setRed( red[i*height+j] / (width*height) ); //I divide through (width*height) because of the scaling happening in the FFT;
  p.setGreen( green[i*height+j] );
  p.setBlue( blue[i*height+j] );
  output.set(j , i , p);
 }
}

Notes:

Examples:

kernelsize: 10

Input:

Output:

Output from normal convolution:

my console says :

142519 out of 262144 Pixels have a difference of 1 or more (maxRGB = 255)

PSNR: 32.006027221679688
MSE: 44.116752624511719

though for my eyes they look the same °.°

Maybe one person is bored and goes through the code. It's not urgent, but it's a kind of problem I just want to know what the hell I did wrong ^^

Last, but not least, my PSNR function, though I don't really think that's the problem :D

void calculateThePSNR(const PixelMatrix first, const PixelMatrix second, float* avgpsnr, float* avgmse) {

int height = first.getHeight();
int width = first.getWidth();

BMP firstOutput;
BMP secondOutput;

firstOutput.SetSize(width, height);
secondOutput.SetSize(width, height);

double rsum=0.0, gsum=0.0, bsum=0.0;
int count = 0;
int total = 0;
for(int i=0; i<height; i++) {
    for(int j=0; j<width; j++) {
        Pixel pixOne = first.get(j,i);
        Pixel pixTwo = second.get(j,i);

        double redOne = pixOne.getRed()*255;
        double greenOne = pixOne.getGreen()*255;
        double blueOne = pixOne.getBlue()*255;

        double redTwo = pixTwo.getRed()*255;
        double greenTwo = pixTwo.getGreen()*255;
        double blueTwo = pixTwo.getBlue()*255;

        firstOutput(j,i)->Red = redOne;
        firstOutput(j,i)->Green = greenOne;
        firstOutput(j,i)->Blue = blueOne;

        secondOutput(j,i)->Red = redTwo;
        secondOutput(j,i)->Green = greenTwo;
        secondOutput(j,i)->Blue = blueTwo;

        if((redOne-redTwo) > 1.0 || (redOne-redTwo) < -1.0) {
            count++;
        }
        total++;

        rsum += (redOne - redTwo) * (redOne - redTwo);
        gsum += (greenOne - greenTwo) * (greenOne - greenTwo);
        bsum += (blueOne - blueTwo) * (blueOne - blueTwo);

    }
}
fprintf(stderr, "%d out of %d Pixels have a difference of 1 or more (maxRGB = 255)", count, total);
double rmse = rsum/(height*width);
double gmse = gsum/(height*width);
double bmse = bsum/(height*width);

double rpsnr = 20 * log10(255/sqrt(rmse));
double gpsnr = 20 * log10(255/sqrt(gmse));
double bpsnr = 20 * log10(255/sqrt(bmse));

firstOutput.WriteToFile("test.bmp");
secondOutput.WriteToFile("test2.bmp");

system("display test.bmp");
system("display test2.bmp");

*avgmse = (rmse + gmse + bmse)/3;
*avgpsnr = (rpsnr + gpsnr + bpsnr)/3;
}

Solution

  • Phonon had the right idea. Your images are shifted. If you shift your image by (1,1), then the MSE will be approximately zero (provided that you mask or crop the images accordingly). I confirmed this using the code (Python + OpenCV) below.

    import cv
    import sys
    import math
    
    def main():
        fname1, fname2 = sys.argv[1:]
        im1 = cv.LoadImage(fname1)
        im2 = cv.LoadImage(fname2)
    
        tmp = cv.CreateImage(cv.GetSize(im1), cv.IPL_DEPTH_8U, im1.nChannels)
        cv.AbsDiff(im1, im2, tmp)
        cv.Mul(tmp, tmp, tmp)
        mse = cv.Avg(tmp)
        print 'MSE:', mse
    
        psnr = [ 10*math.log(255**2/m, 10) for m in mse[:-1] ]
        print 'PSNR:', psnr
    
    if __name__ == '__main__':
        main()
    

    Output:

    MSE: (0.027584912741602553, 0.026742391458366047, 0.028147870144492403, 0.0)
    PSNR: [63.724087463606452, 63.858801190963192, 63.636348220531396]