I wrote simple algorithm for sorting rows in Eigen matrix. This should do the same as Matlab's sortrows function:
template <typename D>
void _sort(
const D &M,
Eigen::VectorX<ptrdiff_t>& idx,
std::function<bool(ptrdiff_t, ptrdiff_t)> cmp_fun)
{
// initialize original index locations
idx = Eigen::ArrayX<ptrdiff_t>::LinSpaced(
M.rows(), 0, M.rows()-1);
std::stable_sort(std::execution::par, idx.begin(), idx.end(), cmp_fun);
}
/// \brief sort_rows sorts the rows of a matrix in ascending order
/// based on the elements in the first column. When the first column
/// contains repeated elements, sortrows sorts according to the values
/// in the next column and repeats this behavior for succeeding equal values.
/// M_sorted = M(ind, Eigen::all)
/// \param M
/// \return ind
template <typename D>
Eigen::VectorX<ptrdiff_t> sort_rows(const Eigen::DenseBase<D> &M){
// initialize original index locations
Eigen::VectorX<ptrdiff_t> idx;
ptrdiff_t col = 0;
std::function<bool(ptrdiff_t, ptrdiff_t)> cmp_fun;
cmp_fun = [&M, &col, &cmp_fun](
const ptrdiff_t& row1,
const ptrdiff_t& row2)->bool
{
if (M(row1, col) < M(row2, col)){
col = 0;
return true;
}
if (M(row1, col) > M(row2, col)){
col = 0;
return false;
}
// only 'M(row1, col) == M(row2, col)' option is left
// it will return 'true' only if this is the last column
// i.e. all other columns at these rows are also equal
if (col == M.cols()-1){
if (M(row1, col) == M(row2, col)){
col = 0;
return true;
}
col = 0;
return false;
}
col++;
return cmp_fun(row1, row2);
};
_sort(M.derived(), idx, cmp_fun);
return idx;
}
If I set std::execution::par
i get wrong result like in the picture:
With std::execution::seq
and the same data the graph non-decreasingly grows in steps (correct result).
What should I know about execution policy to avoid such situations?
EDIT: my implementation for sort_rows
that now works with std::execution::par
and doesn't use recursion anymore:
template <typename D>
void _sort(
const D &M,
Eigen::VectorX<ptrdiff_t>& idx,
std::function<bool(ptrdiff_t, ptrdiff_t)> cmp_fun)
{
// initialize original index locations
idx = Eigen::ArrayX<ptrdiff_t>::LinSpaced(
M.rows(), 0, M.rows()-1);
std::stable_sort(std::execution::par, idx.begin(), idx.end(), cmp_fun);
}
/// \brief sort_rows sorts the rows of a matrix in ascending order
/// based on the elements in the first column. When the first column
/// contains repeated elements, sortrows sorts according to the values
/// in the next column and repeats this behavior for succeeding equal values.
/// M_sorted = M(ind, Eigen::all)
/// \param M
/// \return ind
template <typename D>
Eigen::VectorX<ptrdiff_t> sort_rows(const Eigen::DenseBase<D> &M){
// initialize original index locations
Eigen::VectorX<ptrdiff_t> idx;
std::function<bool(ptrdiff_t, ptrdiff_t)> cmp_fun;
cmp_fun = [&M](
const ptrdiff_t& row1,
const ptrdiff_t& row2)->bool
{
ptrdiff_t N = M.cols()-1;
for (ptrdiff_t col = 0; col < N; col++){
if (M(row1, col) < M(row2, col))
return true;
if (M(row1, col) > M(row2, col))
return false;
}
// notice the operator is '<=' as it is the last column check
// i.e. when all other columns are equal at these rows
if (M(row1, Eigen::last) <= M(row2, Eigen::last))
return true;
return false;
};
_sort(M.derived(), idx, cmp_fun);
return idx;
}
Here is my implementation of rowsort. I find the documentation of rowsort somewhat confusing. I work under the assumption that it is just a lexicographical sort.
Note that your code can probably be fixed just by making a col variable local to your lambda instead of having it as a shared reference.
template<class Derived>
void rowsort(Eigen::MatrixBase<Derived>& mat)
{
using PermutationMatrix =
Eigen::PermutationMatrix<Derived::RowsAtCompileTime>;
PermutationMatrix permut;
permut.setIdentity(mat.rows());
auto& indices = permut.indices();
std::stable_sort(std::execution::par, indices.begin(), indices.end(),
[&mat](Eigen::Index left, Eigen::Index right) noexcept -> bool
{
const auto& leftrow = mat.row(left);
const auto& rightrow = mat.row(right);
for(Eigen::Index col = 0, cols = mat.cols();
col < cols; ++col) {
const auto& leftval = leftrow[col];
const auto& rightval = rightrow[col];
if(leftval < rightval)
return true;
if(leftval > rightval)
break;
}
return false;
});
mat = permut.inverse() * mat;
}
Notes:
block()
expressions and then cast away the const. I didn't put it in to avoid making the code ugly and confusing. Refer to the relevant chapter in the documentation on passing Eigen types to functions