I'm trying to fit and plot a sigmoid curve fitted to my data. Here is my code:
import numpy as np
import pyplot
from scipy.optimize import curve_fit
def sigmoid(x, a, b):
return 1.0 / (1.0 + np.exp(-a*(x-b)))
xdata = [ 26457.28874429, 32614.0743368 , 36375.76229015, 39371.21198926,
41892.69310906, 44162.12906554, 46223.90776821, 48197.46060769,
50022.99546123, 51848.03215704, 53568.91252972, 55354.78073918,
57040.61643994, 58818.59692639, 60676.00000216, 62510.8110985 ,
64586.59777512, 66562.62315247, 68742.97216949, 71078.33629888,
73648.94810531, 76587.27871678, 79749.19546409, 83334.78854123,
87282.81262044, 91925.69906738, 97551.59686331, 104496.29453508,
112988.76665607, 124907.20130917, 144733.52923071, 193062.81222137]
ydata = [0. , 0.57224724, 0.67521945, 0.76716544, 0.7535795 ,
0.69637917, 0.81766149, 0.80906626, 0.71942446, 0.7670196 ,
0.77549438, 0.80370093, 0.77160494, 0.78232104, 0.87796313,
0.89326037, 1.05848115, 1.08499096, 1.13992674, 1.16009281,
1.36193537, 1.58227848, 1.78731153, 1.98694295, 2.19359185,
2.51098556, 2.92349108, 3.47826087, 3.82897412, 4.23472474,
4.19622344, 5.19657584]
popt, pcov = curve_fit(sigmoid, xdata, ydata, method='dogbox', bounds=([min(ydata), min(xdata)],[max(ydata), max(xdata)]))
print(popt)
x = np.linspace(np.min(xdata), np.max(xdata))
y = sigmoid(x, *popt)
pyplot.plot(xdata, ydata, 'o', label='data')
pyplot.plot(x,y, label='fit')
pyplot.legend(loc='best')
pyplot.show()
However, I get an unsmoothed-squared-like curve like this:
I'm following this answer
So there were two problems I encountered:
Here's my code. Note I changed the import of matplotlib. Other than that, it's mostly the same.
import numpy as np
import matplotlib.pyplot as plt # Changed here
from scipy.optimize import curve_fit
def sigmoid(x, a, b, c): # Added param c
return c / (1.0 + np.exp(-a*(x-b)))
# Made xdata into an array
xdata = np.array([ 26457.28874429, 32614.0743368 , 36375.76229015, 39371.21198926,
41892.69310906, 44162.12906554, 46223.90776821, 48197.46060769,
50022.99546123, 51848.03215704, 53568.91252972, 55354.78073918,
57040.61643994, 58818.59692639, 60676.00000216, 62510.8110985 ,
64586.59777512, 66562.62315247, 68742.97216949, 71078.33629888,
73648.94810531, 76587.27871678, 79749.19546409, 83334.78854123,
87282.81262044, 91925.69906738, 97551.59686331, 104496.29453508,
112988.76665607, 124907.20130917, 144733.52923071, 193062.81222137])
ydata = [0. , 0.57224724, 0.67521945, 0.76716544, 0.7535795 ,
0.69637917, 0.81766149, 0.80906626, 0.71942446, 0.7670196 ,
0.77549438, 0.80370093, 0.77160494, 0.78232104, 0.87796313,
0.89326037, 1.05848115, 1.08499096, 1.13992674, 1.16009281,
1.36193537, 1.58227848, 1.78731153, 1.98694295, 2.19359185,
2.51098556, 2.92349108, 3.47826087, 3.82897412, 4.23472474,
4.19622344, 5.19657584]
xdata = xdata / 1E5 # scaled it down
popt, pcov = curve_fit(sigmoid, xdata, ydata, method='dogbox', bounds=([min(ydata), min(xdata), 0],[max(ydata), max(xdata), 10])) # added some bounds for the `c` parameter
print(popt)
x = np.linspace(np.min(xdata), np.max(xdata))
y = sigmoid(x, *popt)
plt.plot(xdata, ydata, 'o', label='data')
plt.plot(x,y, label='fit')
plt.legend(loc='best')
plt.show()
Here's the result: popt=[4.40402529 0.93238322 5.13341602]
,