I am using Optuna for hyperparametrization of my model. And I have a field where I want to test multiple combinations from a list. For example: I have ["lisa","adam","test"]
and I want suggest_categorical
to return not just one, but a random combination: maybe ["lisa", "adam"]
, maybe ["adam"]
, maybe ["lisa", "adam", "test"]
. Is there a way to get this with built in Optuna function?
You could use itertools.combinations
to generate all possible combinations of list items and then pass them to optuna's suggest_categorical
as choices:
import optuna
import itertools
import random
import warnings
warnings.filterwarnings('ignore')
# generate the combinations
iterable = ['lisa', 'adam', 'test']
combinations = []
for r in range(1, len(iterable) + 1):
combinations.extend([list(x) for x in itertools.combinations(iterable=iterable, r=r)])
print(combinations)
# [['lisa'], ['adam'], ['test'], ['lisa', 'adam'], ['lisa', 'test'], ['adam', 'test'], ['lisa', 'adam', 'test']]
# sample the combinations
def objective(trial):
combination = trial.suggest_categorical(name='combination', choices=combinations)
return round(random.random(), 2)
study = optuna.create_study()
study.optimize(objective, n_trials=3)
# [I 2022-08-18 08:03:51,658] A new study created in memory with name: no-name-3874ce95-2394-4526-bb19-0d9822d7e45c
# [I 2022-08-18 08:03:51,659] Trial 0 finished with value: 0.94 and parameters: {'combination': ['adam']}. Best is trial 0 with value: 0.94.
# [I 2022-08-18 08:03:51,660] Trial 1 finished with value: 0.87 and parameters: {'combination': ['lisa', 'test']}. Best is trial 1 with value: 0.87.
# [I 2022-08-18 08:03:51,660] Trial 2 finished with value: 0.29 and parameters: {'combination': ['lisa', 'adam']}. Best is trial 2 with value: 0.29.
Using lists as choices in optuna's suggest_categorical
throws a warning message, but apparently this is mostly inconsequential (see this issue in optuna's GitHub repository).