pythonor-toolsvehicle-routing

OR-Tools CVRP_reload with Pickup-Delivery


I use or-tools to solve problems such as picking up products from EC warehouses.

What I want to do is very similar to the cvrp_reload sample. https://github.com/google/or-tools/blob/stable/ortools/constraint_solver/samples/cvrp_reload.py The difference from the sample is that instead of bringing the load back to the depot, the picked up load is placed at a specific delivery point.

I changed the source of cvrp_reload while looking at the Pickup & Delivery sample in the guide. (Assuming that Node.1 to 5 are the delivery points)

  1. Add Pickup & Delivery point list to data
    data['pickups_deliveries'] = [
        [6, 1], [7, 1],
        [8, 1], [9, 1],
        [10, 2], [11, 2],
        [12, 2], [13, 3],
        [14, 3], [15, 3],
        [16, 4], [17, 4],
        [18, 4], [19, 5],
        [20, 5], [21, 5]        
    ]
  1. Simplification of demands and time_windows in data
    data['demands'] = \
          [0, # depot
           -_capacity, # unload depot_first
           -_capacity, # unload depot_second
           -_capacity, # unload depot_third
           -_capacity, # unload depot_fourth
           -_capacity, # unload depot_fifth
           4, 4, # 1, 2   changed from original
           4, 4, # 3, 4   changed from original
           4, 4, # 5, 6   changed from original
           4, 4, # 7, 8   changed from original
           4, 4, # 9,10   changed from original
           4, 4, # 11,12   changed from original
           4, 4, # 13, 14   changed from original
           4, 4] # 15, 16   changed from original
    data['time_windows'] = \
          [(0, 0), # depot
           (0, 1500), # unload depot_first. changed from original
           (0, 1500), # unload depot_second. changed from original
           (0, 1500), # unload depot_third. changed from original
           (0, 1500), # unload depot_fourth. changed from original
           (0, 1500), # unload depot_fifth. changed from original
           (0, 750), (0, 750), # 1, 2   changed from original
           (0, 750), (0, 750), # 3, 4   changed from original
           (0, 750), (0, 750), # 5, 6   changed from original
           (0, 750), (0, 750), # 7, 8   changed from original
           (0, 750), (0, 750), # 9, 10   changed from original
           (750, 1500), (750, 1500), # 11, 12   changed from original
           (750, 1500), (750, 1500), # 13, 14   changed from original
           (750, 1500), (750, 1500)] # 15, 16   changed from original
  1. Define transportation requests in add_distance_dimension function
    for request in data['pickups_deliveries']:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(
                delivery_index))
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))

Running this code will drop all nodes. However, limiting the list of P&Ds to just a few gives a solution.

data['pickups_deliveries'] = [
    [6, 1], [7, 1],
    [8, 1], [9, 1],
    [10, 2], [11, 2],
    # [12, 2], [13, 3],
    # [14, 3], [15, 3],
    # [16, 4], [17, 4],
    # [18, 4], [19, 5],
    # [20, 5], [21, 5]        
]

Please give me a hint where my method is wrong.

This is the entire code. Thanks for reading my question.

from functools import partial

from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2


###########################
# Problem Data Definition #
###########################
def create_data_model():
    """Stores the data for the problem"""
    data = {}
    _capacity = 15
    # Locations in block unit
    _locations = [
        (4, 4),  # depot
        (4, 4),  # unload depot_first
        (4, 4),  # unload depot_second
        (4, 4),  # unload depot_third
        (4, 4),  # unload depot_fourth
        (4, 4),  # unload depot_fifth
        (2, 0),
        (8, 0),  # locations to visit
        (0, 1),
        (1, 1),
        (5, 2),
        (7, 2),
        (3, 3),
        (6, 3),
        (5, 5),
        (8, 5),
        (1, 6),
        (2, 6),
        (3, 7),
        (6, 7),
        (0, 8),
        (7, 8)
    ]
    # Compute locations in meters using the block dimension defined as follow
    # Manhattan average block: 750ft x 264ft -> 228m x 80m
    # here we use: 114m x 80m city block
    data['locations'] = [(l[0] * 114, l[1] * 80) for l in _locations]
    data['num_locations'] = len(data['locations'])
    data['demands'] = \
          [0, # depot
           -_capacity, # unload depot_first
           -_capacity, # unload depot_second
           -_capacity, # unload depot_third
           -_capacity, # unload depot_fourth
           -_capacity, # unload depot_fifth
           4, 4, # 1, 2   changed from original
           4, 4, # 3, 4   changed from original
           4, 4, # 5, 6   changed from original
           4, 4, # 7, 8   changed from original
           4, 4, # 9,10   changed from original
           4, 4, # 11,12   changed from original
           4, 4, # 13, 14   changed from original
           4, 4] # 15, 16   changed from original
    data['time_per_demand_unit'] = 5  # 5 minutes/unit
    data['time_windows'] = \
          [(0, 0), # depot
           (0, 1500), # unload depot_first. changed from original
           (0, 1500), # unload depot_second. changed from original
           (0, 1500), # unload depot_third. changed from original
           (0, 1500), # unload depot_fourth. changed from original
           (0, 1500), # unload depot_fifth. changed from original
           (0, 750), (0, 750), # 1, 2   changed from original
           (0, 750), (0, 750), # 3, 4   changed from original
           (0, 750), (0, 750), # 5, 6   changed from original
           (0, 750), (0, 750), # 7, 8   changed from original
           (0, 750), (0, 750), # 9, 10   changed from original
           (750, 1500), (750, 1500), # 11, 12   changed from original
           (750, 1500), (750, 1500), # 13, 14   changed from original
           (750, 1500), (750, 1500)] # 15, 16   changed from original
    #added p&d list.##############################
    data['pickups_deliveries'] = [
        [6, 1], [7, 1],
        [8, 1], [9, 1],
        [10, 2], [11, 2],
        [12, 2], [13, 3],
        [14, 3], [15, 3],
        [16, 4], [17, 4],
        [18, 4], [19, 5],
        [20, 5], [21, 5]        
    ]
    ##############################################
    data['num_vehicles'] = 3
    data['vehicle_capacity'] = _capacity
    data['vehicle_max_distance'] = 10_000
    data['vehicle_max_time'] = 1_500
    data[
        'vehicle_speed'] = 5 * 60 / 3.6  # Travel speed: 5km/h to convert in m/min
    data['depot'] = 0
    return data


#######################
# Problem Constraints #
#######################
def manhattan_distance(position_1, position_2):
    """Computes the Manhattan distance between two points"""
    return (abs(position_1[0] - position_2[0]) +
            abs(position_1[1] - position_2[1]))


def create_distance_evaluator(data):
    """Creates callback to return distance between points."""
    _distances = {}
    # precompute distance between location to have distance callback in O(1)
    for from_node in range(data['num_locations']):
        _distances[from_node] = {}
        for to_node in range(data['num_locations']):
            if from_node == to_node:
                _distances[from_node][to_node] = 0
            # Forbid start/end/reload node to be consecutive.
            elif from_node in range(6) and to_node in range(6):
                _distances[from_node][to_node] = data['vehicle_max_distance']
            else:
                _distances[from_node][to_node] = (manhattan_distance(
                    data['locations'][from_node], data['locations'][to_node]))

    def distance_evaluator(manager, from_node, to_node):
        """Returns the manhattan distance between the two nodes"""
        return _distances[manager.IndexToNode(from_node)][manager.IndexToNode(
            to_node)]

    return distance_evaluator


def add_distance_dimension(routing, manager, data, distance_evaluator_index):
    """Add Global Span constraint"""
    distance = 'Distance'
    routing.AddDimension(
        distance_evaluator_index,
        0,  # null slack
        data['vehicle_max_distance'],  # maximum distance per vehicle
        True,  # start cumul to zero
        distance)
    distance_dimension = routing.GetDimensionOrDie(distance)
    # Try to minimize the max distance among vehicles.
    # /!\ It doesn't mean the standard deviation is minimized
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Define Transportation Requests. #######################################
    for request in data['pickups_deliveries']:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(
                delivery_index))
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))
    ##########################################################################

def create_demand_evaluator(data):
    """Creates callback to get demands at each location."""
    _demands = data['demands']

    def demand_evaluator(manager, from_node):
        """Returns the demand of the current node"""
        return _demands[manager.IndexToNode(from_node)]

    return demand_evaluator


def add_capacity_constraints(routing, manager, data, demand_evaluator_index):
    """Adds capacity constraint"""
    vehicle_capacity = data['vehicle_capacity']
    capacity = 'Capacity'
    routing.AddDimension(
        demand_evaluator_index,
        vehicle_capacity,
        vehicle_capacity,
        True,  # start cumul to zero
        capacity)

    # Add Slack for reseting to zero unload depot nodes.
    # e.g. vehicle with load 10/15 arrives at node 1 (depot unload)
    # so we have CumulVar = 10(current load) + -15(unload) + 5(slack) = 0.
    capacity_dimension = routing.GetDimensionOrDie(capacity)
    # Allow to drop reloading nodes with zero cost.
    for node in [1, 2, 3, 4, 5]:
        node_index = manager.NodeToIndex(node)
        routing.AddDisjunction([node_index], 0)

    # Allow to drop regular node with a cost.
    for node in range(6, len(data['demands'])):
        node_index = manager.NodeToIndex(node)
        capacity_dimension.SlackVar(node_index).SetValue(0)
        routing.AddDisjunction([node_index], 100_000)


def create_time_evaluator(data):
    """Creates callback to get total times between locations."""

    def service_time(data, node):
        """Gets the service time for the specified location."""
        return abs(data['demands'][node]) * data['time_per_demand_unit']

    def travel_time(data, from_node, to_node):
        """Gets the travel times between two locations."""
        if from_node == to_node:
            travel_time = 0
        else:
            travel_time = manhattan_distance(
                    data['locations'][from_node], data['locations'][to_node]) / data['vehicle_speed']
        return travel_time

    _total_time = {}
    # precompute total time to have time callback in O(1)
    for from_node in range(data['num_locations']):
        _total_time[from_node] = {}
        for to_node in range(data['num_locations']):
            if from_node == to_node:
                _total_time[from_node][to_node] = 0
            else:
                _total_time[from_node][to_node] = int(
                    service_time(data, from_node) + travel_time(
                        data, from_node, to_node))

    def time_evaluator(manager, from_node, to_node):
        """Returns the total time between the two nodes"""
        return _total_time[manager.IndexToNode(from_node)][manager.IndexToNode(
            to_node)]

    return time_evaluator


def add_time_window_constraints(routing, manager, data, time_evaluator):
    """Add Time windows constraint"""
    time = 'Time'
    max_time = data['vehicle_max_time']
    routing.AddDimension(
        time_evaluator,
        max_time,  # allow waiting time
        max_time,  # maximum time per vehicle
        False,  # don't force start cumul to zero since we are giving TW to start nodes
        time)
    time_dimension = routing.GetDimensionOrDie(time)
    # Add time window constraints for each location except depot
    # and 'copy' the slack var in the solution object (aka Assignment) to print it
    for location_idx, time_window in enumerate(data['time_windows']):
        if location_idx == 0:
            continue
        index = manager.NodeToIndex(location_idx)
        time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
        routing.AddToAssignment(time_dimension.SlackVar(index))
    # Add time window constraints for each vehicle start node
    # and 'copy' the slack var in the solution object (aka Assignment) to print it
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        time_dimension.CumulVar(index).SetRange(data['time_windows'][0][0],
                                                data['time_windows'][0][1])
        routing.AddToAssignment(time_dimension.SlackVar(index))
        # Warning: Slack var is not defined for vehicle's end node
        #routing.AddToAssignment(time_dimension.SlackVar(self.routing.End(vehicle_id)))


###########
# Printer #
###########
def print_solution(data, manager, routing, assignment):  # pylint:disable=too-many-locals
    """Prints assignment on console"""
    print(f'Objective: {assignment.ObjectiveValue()}')
    total_distance = 0
    total_load = 0
    total_time = 0
    capacity_dimension = routing.GetDimensionOrDie('Capacity')
    time_dimension = routing.GetDimensionOrDie('Time')
    dropped = []
    for order in range(6, routing.nodes()):
        index = manager.NodeToIndex(order)
        if assignment.Value(routing.NextVar(index)) == index:
            dropped.append(order)
    print(f'dropped orders: {dropped}')
    for reload in range(1, 6):
        index = manager.NodeToIndex(reload)
        if assignment.Value(routing.NextVar(index)) == index:
            dropped.append(reload)
    print(f'dropped reload stations: {dropped}')

    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = f'Route for vehicle {vehicle_id}:\n'
        distance = 0
        while not routing.IsEnd(index):
            load_var = capacity_dimension.CumulVar(index)
            time_var = time_dimension.CumulVar(index)
            plan_output += ' {0} Load({1}) Time({2},{3}) ->'.format(
                manager.IndexToNode(index),
                assignment.Value(load_var),
                assignment.Min(time_var), assignment.Max(time_var))
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            distance += routing.GetArcCostForVehicle(previous_index, index,
                                                     vehicle_id)
        load_var = capacity_dimension.CumulVar(index)
        time_var = time_dimension.CumulVar(index)
        plan_output += ' {0} Load({1}) Time({2},{3})\n'.format(
            manager.IndexToNode(index),
            assignment.Value(load_var),
            assignment.Min(time_var), assignment.Max(time_var))
        plan_output += f'Distance of the route: {distance}m\n'
        plan_output += f'Load of the route: {assignment.Value(load_var)}\n'
        plan_output += f'Time of the route: {assignment.Value(time_var)}min\n'
        print(plan_output)
        total_distance += distance
        total_load += assignment.Value(load_var)
        total_time += assignment.Value(time_var)
    print('Total Distance of all routes: {}m'.format(total_distance))
    print('Total Load of all routes: {}'.format(total_load))
    print('Total Time of all routes: {}min'.format(total_time))


########
# Main #
########
def main():
    """Entry point of the program"""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager
    manager = pywrapcp.RoutingIndexManager(data['num_locations'],
                                           data['num_vehicles'], data['depot'])

    # Create Routing Model
    routing = pywrapcp.RoutingModel(manager)

    # Define weight of each edge
    distance_evaluator_index = routing.RegisterTransitCallback(
        partial(create_distance_evaluator(data), manager))
    routing.SetArcCostEvaluatorOfAllVehicles(distance_evaluator_index)

    # Add Distance constraint to minimize the longuest route
    add_distance_dimension(routing, manager, data, distance_evaluator_index)

    # Add Capacity constraint
    demand_evaluator_index = routing.RegisterUnaryTransitCallback(
        partial(create_demand_evaluator(data), manager))
    add_capacity_constraints(routing, manager, data, demand_evaluator_index)

    # Add Time Window constraint
    time_evaluator_index = routing.RegisterTransitCallback(
        partial(create_time_evaluator(data), manager))
    add_time_window_constraints(routing, manager, data, time_evaluator_index)

    # Setting first solution heuristic (cheapest addition).
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)  # pylint: disable=no-member
    search_parameters.local_search_metaheuristic = (
        routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
    search_parameters.time_limit.FromSeconds(3)

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)
    if solution:
        print_solution(data, manager, routing, solution)
    else:
        print("No solution found !")


if __name__ == '__main__':
    main()

Solution

  • I got advice comments from Mizux and fixed the code.

    I have a pair of Pickup and Delivery points and map the same Delivery points to the same coordinates. Thanks to Mizux for the great advice.

    from functools import partial
    
    from ortools.constraint_solver import pywrapcp
    from ortools.constraint_solver import routing_enums_pb2
    
    
    ###########################
    # Problem Data Definition #
    ###########################
    def create_data_model():
        """Stores the data for the problem"""
        data = {}
        _capacity = 15
        # Locations in block unit
        _locations = [
            (4, 4),  # depot
            (7, 3), (5, 5), #1,2   pickup_loc, delivery_loc
            (6, 6), (5, 5), #3,4   pickup_loc, delivery_loc
            (3, 4), (5, 5), #5,6   pickup_loc, delivery_loc
            (3, 5), (3, 3), #7,8   pickup_loc, delivery_loc
            (2, 7), (3, 3), #9,10   pickup_loc, delivery_loc
            (6, 3), (3, 3), #11,12   pickup_loc, delivery_loc
            (8, 5), (7, 7), #13,14   pickup_loc, delivery_loc
            (2, 6), (7, 7), #15,16   pickup_loc, delivery_loc
            (6, 7), (7, 7), #17,18   pickup_loc, delivery_loc
            (7, 8), (8, 8), #19,20   pickup_loc, delivery_loc
            (5, 7), (8, 8), #20,21   pickup_loc, delivery_loc
        ]
        # Compute locations in meters using the block dimension defined as follow
        # Manhattan average block: 750ft x 264ft -> 228m x 80m
        # here we use: 114m x 80m city block
        data['locations'] = [(l[0] * 114, l[1] * 80) for l in _locations]
        data['num_locations'] = len(data['locations'])
        data['demands'] = \
              [0, # depot           
               4, -4, # 1, 2   load, unload
               4, -4, # 3, 4   load, unload
               4, -4, # 5, 6   load, unload
               4, -4, # 7, 8   load, unload
               4, -4, # 9, 10   load, unload
               4, -4, # 11, 12   load, unload
               4, -4, # 13, 14   load, unload
               4, -4, # 15, 16   load, unload
               4, -4, # 17, 18   load, unload
               4, -4, # 19, 20   load, unload
               4, -4] # 21, 22   load, unload          
        data['time_per_demand_unit'] = 5  # 5 minutes/unit
        data['time_windows'] = \
              [(0, 0), # depot           
               (0, 1500), (0, 750), # 1, 2   specify delivery time
               (0, 1500), (0, 750), # 3, 4   specify delivery time
               (0, 1500), (0, 750), # 5, 6   specify delivery time
               (0, 1500), (0, 750), # 7, 8   specify delivery time
               (0, 1500), (0, 750), # 9, 10   specify delivery time
               (0, 1500), (0, 750), # 11, 12   specify delivery time
               (0, 1500), (750, 1500), # 13, 14   specify delivery time
               (0, 1500), (750, 1500), # 15, 16   specify delivery time
               (0, 1500), (750, 1500), # 17, 18   specify delivery time
               (0, 1500), (750, 1500), # 19, 20   specify delivery time
               (0, 1500), (750, 1500)] # 21, 22   specify delivery time
        #added p&d list.##############################
        data['pickups_deliveries'] = [
            [1, 2], [3, 4],
            [5, 6], [7, 8],
            [9, 10], [11, 12],
            [13, 14], [15, 16],
            [17, 18], [19, 20],
            [21, 22]
        ]
        ##############################################
        data['num_vehicles'] = 3    
        data['vehicle_capacity'] = _capacity
        data['vehicle_max_distance'] = 10_000
        data['vehicle_max_time'] = 1_500
        data[
            'vehicle_speed'] = 5 * 60 / 3.6  # Travel speed: 5km/h to convert in m/min
        data['depot'] = 0
        return data
    
    
    #######################
    # Problem Constraints #
    #######################
    def manhattan_distance(position_1, position_2):
        """Computes the Manhattan distance between two points"""
        return (abs(position_1[0] - position_2[0]) +
                abs(position_1[1] - position_2[1]))
    
    
    def create_distance_evaluator(data):
        """Creates callback to return distance between points."""
        _distances = {}
        # precompute distance between location to have distance callback in O(1)
        for from_node in range(data['num_locations']):
            _distances[from_node] = {}
            for to_node in range(data['num_locations']):
                if from_node == to_node:
                    _distances[from_node][to_node] = 0
                # commented out for unused duplicate depot######################
                # elif from_node in range(6) and to_node in range(6):
                #     _distances[from_node][to_node] = data['vehicle_max_distance']
                else:
                    _distances[from_node][to_node] = (manhattan_distance(
                        data['locations'][from_node], data['locations'][to_node]))
    
        def distance_evaluator(manager, from_node, to_node):
            """Returns the manhattan distance between the two nodes"""
            return _distances[manager.IndexToNode(from_node)][manager.IndexToNode(
                to_node)]
    
        return distance_evaluator
    
    
    def add_distance_dimension(routing, manager, data, distance_evaluator_index):
        """Add Global Span constraint"""
        distance = 'Distance'
        routing.AddDimension(
            distance_evaluator_index,
            0,  # null slack
            data['vehicle_max_distance'],  # maximum distance per vehicle
            True,  # start cumul to zero
            distance)
        distance_dimension = routing.GetDimensionOrDie(distance)
        # Try to minimize the max distance among vehicles.
        # /!\ It doesn't mean the standard deviation is minimized
        distance_dimension.SetGlobalSpanCostCoefficient(100)
    
        # Define Transportation Requests. #######################################
        for request in data['pickups_deliveries']:
            pickup_index = manager.NodeToIndex(request[0])
            delivery_index = manager.NodeToIndex(request[1])
            routing.AddPickupAndDelivery(pickup_index, delivery_index)
            routing.solver().Add(
                routing.VehicleVar(pickup_index) == routing.VehicleVar(
                    delivery_index))
            routing.solver().Add(
                distance_dimension.CumulVar(pickup_index) <=
                distance_dimension.CumulVar(delivery_index))
        ##########################################################################
    
    def create_demand_evaluator(data):
        """Creates callback to get demands at each location."""
        _demands = data['demands']
    
        def demand_evaluator(manager, from_node):
            """Returns the demand of the current node"""
            return _demands[manager.IndexToNode(from_node)]
    
        return demand_evaluator
    
    
    def add_capacity_constraints(routing, manager, data, demand_evaluator_index):
        """Adds capacity constraint"""
        vehicle_capacity = data['vehicle_capacity']
        capacity = 'Capacity'
        routing.AddDimension(
            demand_evaluator_index,
            vehicle_capacity,
            vehicle_capacity,
            True,  # start cumul to zero
            capacity)
    
        # Add Slack for reseting to zero unload depot nodes.
        # e.g. vehicle with load 10/15 arrives at node 1 (depot unload)
        # so we have CumulVar = 10(current load) + -15(unload) + 5(slack) = 0.
        capacity_dimension = routing.GetDimensionOrDie(capacity)
        # Allow to drop reloading nodes with zero cost.
        # for node in [1, 2, 3, 4, 5]:
        #     node_index = manager.NodeToIndex(node)
        #     routing.AddDisjunction([node_index], 0)
    
        # Allow to drop regular node with a cost. (Pickup & Delivery node)
        for node in range(1, len(data['demands'])):
            node_index = manager.NodeToIndex(node)
            capacity_dimension.SlackVar(node_index).SetValue(0)
            routing.AddDisjunction([node_index], 100_000)
    
    
    def create_time_evaluator(data):
        """Creates callback to get total times between locations."""
    
        def service_time(data, node):
            """Gets the service time for the specified location."""
            return abs(data['demands'][node]) * data['time_per_demand_unit']
    
        def travel_time(data, from_node, to_node):
            """Gets the travel times between two locations."""
            if from_node == to_node:
                travel_time = 0
            else:
                travel_time = manhattan_distance(
                        data['locations'][from_node], data['locations'][to_node]) / data['vehicle_speed']
            return travel_time
    
        _total_time = {}
        # precompute total time to have time callback in O(1)
        for from_node in range(data['num_locations']):
            _total_time[from_node] = {}
            for to_node in range(data['num_locations']):
                if from_node == to_node:
                    _total_time[from_node][to_node] = 0
                else:
                    _total_time[from_node][to_node] = int(
                        service_time(data, from_node) + travel_time(
                            data, from_node, to_node))
    
        def time_evaluator(manager, from_node, to_node):
            """Returns the total time between the two nodes"""
            return _total_time[manager.IndexToNode(from_node)][manager.IndexToNode(
                to_node)]
    
        return time_evaluator
    
    
    def add_time_window_constraints(routing, manager, data, time_evaluator):
        """Add Time windows constraint"""
        time = 'Time'
        max_time = data['vehicle_max_time']
        routing.AddDimension(
            time_evaluator,
            max_time,  # allow waiting time
            max_time,  # maximum time per vehicle
            False,  # don't force start cumul to zero since we are giving TW to start nodes
            time)
        time_dimension = routing.GetDimensionOrDie(time)
        # Add time window constraints for each location except depot
        # and 'copy' the slack var in the solution object (aka Assignment) to print it
        for location_idx, time_window in enumerate(data['time_windows']):
            if location_idx == 0:
                continue
            index = manager.NodeToIndex(location_idx)
            time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
            routing.AddToAssignment(time_dimension.SlackVar(index))
        # Add time window constraints for each vehicle start node
        # and 'copy' the slack var in the solution object (aka Assignment) to print it
        for vehicle_id in range(data['num_vehicles']):
            index = routing.Start(vehicle_id)
            time_dimension.CumulVar(index).SetRange(data['time_windows'][0][0],
                                                    data['time_windows'][0][1])
            routing.AddToAssignment(time_dimension.SlackVar(index))
            # Warning: Slack var is not defined for vehicle's end node
            #routing.AddToAssignment(time_dimension.SlackVar(self.routing.End(vehicle_id)))
    
    
    ###########
    # Printer #
    ###########
    def print_solution(data, manager, routing, assignment):  # pylint:disable=too-many-locals
        """Prints assignment on console"""
        print(f'Objective: {assignment.ObjectiveValue()}')
        total_distance = 0
        total_load = 0
        total_time = 0
        capacity_dimension = routing.GetDimensionOrDie('Capacity')
        time_dimension = routing.GetDimensionOrDie('Time')
        dropped = []
        for order in range(6, routing.nodes()):
            index = manager.NodeToIndex(order)
            if assignment.Value(routing.NextVar(index)) == index:
                dropped.append(order)
        print(f'dropped orders: {dropped}')
        for reload in range(1, 6):
            index = manager.NodeToIndex(reload)
            if assignment.Value(routing.NextVar(index)) == index:
                dropped.append(reload)
        print(f'dropped reload stations: {dropped}')
    
        for vehicle_id in range(data['num_vehicles']):
            index = routing.Start(vehicle_id)
            plan_output = f'Route for vehicle {vehicle_id}:\n'
            distance = 0
            while not routing.IsEnd(index):
                load_var = capacity_dimension.CumulVar(index)
                time_var = time_dimension.CumulVar(index)
                plan_output += ' {0} Load({1}) Time({2},{3}) ->'.format(
                    manager.IndexToNode(index),
                    assignment.Value(load_var),
                    assignment.Min(time_var), assignment.Max(time_var))
                previous_index = index
                index = assignment.Value(routing.NextVar(index))
                distance += routing.GetArcCostForVehicle(previous_index, index,
                                                         vehicle_id)
            load_var = capacity_dimension.CumulVar(index)
            time_var = time_dimension.CumulVar(index)
            plan_output += ' {0} Load({1}) Time({2},{3})\n'.format(
                manager.IndexToNode(index),
                assignment.Value(load_var),
                assignment.Min(time_var), assignment.Max(time_var))
            plan_output += f'Distance of the route: {distance}m\n'
            plan_output += f'Load of the route: {assignment.Value(load_var)}\n'
            plan_output += f'Time of the route: {assignment.Value(time_var)}min\n'
            print(plan_output)
            total_distance += distance
            total_load += assignment.Value(load_var)
            total_time += assignment.Value(time_var)
        print('Total Distance of all routes: {}m'.format(total_distance))
        print('Total Load of all routes: {}'.format(total_load))
        print('Total Time of all routes: {}min'.format(total_time))
    
    
    ########
    # Main #
    ########
    def main():
        """Entry point of the program"""
        # Instantiate the data problem.
        data = create_data_model()
    
        # Create the routing index manager
        manager = pywrapcp.RoutingIndexManager(data['num_locations'],
                                               data['num_vehicles'], data['depot'])
    
        # Create Routing Model
        routing = pywrapcp.RoutingModel(manager)
    
        # Define weight of each edge
        distance_evaluator_index = routing.RegisterTransitCallback(
            partial(create_distance_evaluator(data), manager))
        routing.SetArcCostEvaluatorOfAllVehicles(distance_evaluator_index)
    
        # Add Distance constraint to minimize the longuest route
        add_distance_dimension(routing, manager, data, distance_evaluator_index)
    
        # Add Capacity constraint
        demand_evaluator_index = routing.RegisterUnaryTransitCallback(
            partial(create_demand_evaluator(data), manager))
        add_capacity_constraints(routing, manager, data, demand_evaluator_index)
    
        # Add Time Window constraint
        time_evaluator_index = routing.RegisterTransitCallback(
            partial(create_time_evaluator(data), manager))
        add_time_window_constraints(routing, manager, data, time_evaluator_index)
    
        # Setting first solution heuristic (cheapest addition).
        search_parameters = pywrapcp.DefaultRoutingSearchParameters()
        search_parameters.first_solution_strategy = (
            routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)  # pylint: disable=no-member
        search_parameters.local_search_metaheuristic = (
            routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
        search_parameters.time_limit.FromSeconds(3)
    
        # Solve the problem.
        solution = routing.SolveWithParameters(search_parameters)
        if solution:
            print_solution(data, manager, routing, solution)
        else:
            print("No solution found !")
    
    
    if __name__ == '__main__':
        main()