I have an array for a example:
import NumPy as np
a=np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
# it will give the transition of an array where the element value changes 1 to 0
x= np.gradient(a, axis=0)
y= np.gradient(a, axis=1)
trans_YX = np.array(list(zip(x.ravel(), y.ravel())), dtype=('f4,f4')).reshape(y.shape)
print(trans_YX)
# by np.argwhere() 0r np. nonzero() function, able to access the indices like row and column
value
indices=np.argwhere(trans_YX)
print(indices)
the present output:
[[1 2]
[1 3]
[1 4]
[2 1]
[2 2]
[2 3]
[2 4]
[2 5]
[2 7]
[2 8]
[3 1]
[3 2]
[3 4]
[3 5]
[3 6]
[3 7]
[3 8]
[3 9]
[4 1]
[4 2]
[4 4]
[4 5]
[4 6]
[4 7]
[4 8]
[4 9]
[5 1]
[5 2]
[5 3]
[5 4]
[5 5]
[5 7]
[5 8]
[6 2]
[6 3]
[6 4]]
expected output:
The current code finds the corresponding row and column values of element value transitions from 0 to 1 and 1 to zero.
The code is supposed to access the column and row values around squares (e.g. the indices of the red color outlined in the attached image), it's a big array and these types of varying square sizes are distributed throughout the array.
Is it possible to access these transitions using e.g. scikit-learn special functions?
Here is how you can grab the squares of 1s and their borders:
In [16]: a
Out[16]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
In [17]: s2 = nd.generate_binary_structure(2,2)
In [18]: lab, nlab = nd.label(a, s2)
In [19]: lab
Out[19]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0],
[0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)
In [20]: for i in range(1, nlab+1):
...: region_i = lab==i
...: expanded = nd.binary_dilation(region_i, iterations=1, structure=s2)
...: border = np.logical_xor(region_i, expanded)
...:
...: print(border)
...: print("")
...:
[[False False False False False False False False False False False]
[False True True True True True False False False False False]
[False True False False False True False False False False False]
[False True False False False True False False False False False]
[False True False False False True False False False False False]
[False True False False False True False False False False False]
[False True True True True True False False False False False]
[False False False False False False False False False False False]]
[[False False False False False False False False False False False]
[False False False False False False False False False False False]
[False False False False False False True True True True False]
[False False False False False False True False False True False]
[False False False False False False True False False True False]
[False False False False False False True True True True False]
[False False False False False False False False False False False]
[False False False False False False False False False False False]]
You can then use np.where to find the row,col indices of the border:
In [21]: y,x = np.where(border)
In [22]: y
Out[22]: array([2, 2, 3, 3, 4, 4, 5, 5])
In [23]: x
Out[23]: array([7, 8, 6, 9, 6, 9, 7, 8])