pythonmulticlass-classificationprecision-recall

How can I reduce lines of code and make it work with other data?


I have multi-classes like this:

predicted = [1 0 2 1 1 0 1 2 1 2 2 0 0 0 0 2 2 1 1 1 0 1 0 1 2 1 1 2 0 0]
actual    = [1 0 2 1 1 0 1 2 1 1 2 0 0 0 0 1 2 1 1 2 0 2 0 2 2 2 2 2 0 0]

And I want to find the precision for each class(0,1,2)

This is my code:

TP_0 = 0
TP_1 = 0
TP_2 = 0
FP_0 = 0
FP_1 = 0
FP_2 = 0
    
for i in range(len(y_pred)):
    if y_pred[i] == y_test[i] :
        if y_pred[i] == 0: 
            TP_0 += 1
        elif y_pred[i] == 1:
            TP_1 += 1
        else:
            TP_2 += 1
    else:
        if y_pred[i] == 0: 
            FP_0 += 1
        elif y_pred[i] == 1:
            FP_1 += 1
        else:
            FP_2 += 1 

precision_0 = TP_0/(TP_0+FP_0)
precision_1 = TP_1/(TP_1+FP_1)
precision_2 = TP_2/(TP_2+FP_2)

It works if I know the number of classes and data before. But now I want to make it work whether or not I know them, like if I have a larger number of classes.

How can I reduce the code or make it dynamic?

Note: I don't like to finish it with a library.


Solution

  • You can try this:

    def precision(y_test, y_pred): 
        # to count false-pos and true-pos  
        classes = sorted(list(set(y_test + y_pred)))
        tp = {cls: 0 for cls in classes}
        fp = {cls: 0 for cls in classes}
        
        # count tp and fp
        for i in range(len(y_pred)):
            if y_pred[i] == y_test[i]:
                tp[y_test[i]] += 1
            else:
                fp[y_test[i]] += 1
        
        
        # calculate prec for every class
        precision = dict()
        for cls in classes:
            try:
                precision[cls] = tp[cls] / (tp[cls] + fp[cls])
            except ZeroDivisionError:
                precision[cls] = 0.0
        
        return precision
    
    
    predicted = [0, 1, 2, 3, 0, 1, 4]
    actual = [0, 1, 2, 0, 1, 2, 3]
    print(precision(actual, predicted))
    

    Output:

    {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.0, 4: 0.0}
    

    You get dictionary with key - class and value - precision.