I am trying make a cylinder with using vertices and indices in OpenGL. I am still trying to build the base of a cylinder using triangles and cosine and sine functions and render it. But for some reason, it came out as one big triangle made up of two triangles. Can someone help me figure the right coordinates for the base of a cylinder? Or even better, the coordinates a whole cylinder. Here is my code:
#include <GL\glew.h>
#include <GLFW\glfw3.h>
#include <iostream>
// GLM library
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
using namespace std;
int width, height;
const double PI = 3.14159;
const float toRadians = PI / 180.0f;
// Draw Primitive(s)
void draw() {
GLenum mode = GL_TRIANGLES;
GLsizei indices = 6;
glDrawElements(mode, indices, GL_UNSIGNED_BYTE, nullptr);
}
// Create and Compile Shaders
static GLuint CompileShader(const string& source, GLuint shaderType) {
// Create Shader Object
GLuint shaderID = glCreateShader(shaderType);
const char* src = source.c_str();
// Attach source code to Shader object
glShaderSource(shaderID, 1, &src, nullptr);
// Compile Shader
glCompileShader(shaderID);
// Return ID of Compiled shader
return shaderID;
}
// Create Program Object
static GLuint CreateShaderProgram(const string& vertexShader, const string& fragmentShader) {
// Compile vertex shader
GLuint vertexShaderComp = CompileShader(vertexShader, GL_VERTEX_SHADER);
// Compile fragment shader
GLuint fragmentShaderComp = CompileShader(fragmentShader, GL_FRAGMENT_SHADER);
// Create program object
GLuint shaderProgram = glCreateProgram();
// Attch vertex and fragment shaders to program object
glAttachShader(shaderProgram, vertexShaderComp);
glAttachShader(shaderProgram, fragmentShaderComp);
// Link shaders to create executable
glLinkProgram(shaderProgram);
// Delete compiled vertex and fragment shaders
glDeleteShader(vertexShaderComp);
glDeleteShader(fragmentShaderComp);
// Return Shader Program
return shaderProgram;
}
int main(void) {
width = 640; height = 480;
GLFWwindow* window;
// Initialize the library
if (!glfwInit())
return -1;
// Create a windowed mode window and its OpenGL context
window = glfwCreateWindow(width, height, "Main Window", NULL, NULL);
if (!window) {
glfwTerminate();
return -1;
}
// Make the window's context current
glfwMakeContextCurrent(window);
// Initialize GLEW
if (glewInit() != GLEW_OK)
cout << "Error!" << endl;
GLfloat vertices[] = {
// Triangle One
0.0, 0.0, 0.0, // vert 0
1.0, 0.0, 0.0, // red
cos(60), sin(60), 0.0, // vert 1
0.0, 1.0, 0.0, // green
cos(60), -sin(60), 0.0, // vert 2
0.0, 0.0, 1.0, // blue
// Part of Triangle Two
-cos(60), -sin(60), 0.0, // vert 3
1.0, 0.0, 1.0, // purple
// Part of Triangle Three
-cos(60), -sin(60), 0.0, // vert 4
0.0, 1.0, 0.0, // green
// Part of Triangle Four
-cos(60), sin(60), 0.0, // vert 5
0.0, 0.0, 1.0, // blue
// Part of Triangle Five
-cos(60), sin(60), 0.0, // vert 6
1.0, 0.0, 1.0, // purple
// Part of Triangle Six
-cos(60), sin(60), 0.0, // vert 7
0.0, 1.0, 0.0 // green
};
// Define element indices
GLubyte indices[] = {
0,1,2,
0,2,3,
0,3,4,
0,4,5,
0,5,6,
0,6,7
};
// Enable Depth Buffer
glEnable(GL_DEPTH_TEST);
// Wireframe mode
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
GLuint VBO, EBO, VAO;
glGenBuffers(1, &VBO); // Create VBO and returns ID
glGenBuffers(1, &EBO); // Create EBO
glGenVertexArrays(1, &VAO); // Create VAO
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO); // Select VBO and activate buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO); // Select EBO
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); // Load vertex attributes
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW); // Load indices attributes
// Specify attributes location and layout to GPU
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
// Color attribute location and layout
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glBindVertexArray(0);
// Vertex shader source code
string vertexShaderSource =
"#version 330 core\n"
"layout(location = 0) in vec4 vPosition;"
"layout(location = 1) in vec4 aColor;"
"out vec4 oColor;"
"uniform mat4 model;"
"uniform mat4 view;"
"uniform mat4 projection;"
"void main()\n"
"{\n"
"gl_Position = projection * view * model * vPosition;"
"oColor = aColor;"
"}\n";
// Fragment shader source code
string fragmentShaderSource =
"#version 330 core\n"
"in vec4 oColor;"
"out vec4 fragColor;"
"void main()\n"
"{\n"
"fragColor = oColor;"
"}\n";
// Creating Shader Program
GLuint shaderProgram = CreateShaderProgram(vertexShaderSource, fragmentShaderSource);
while (!glfwWindowShouldClose(window)) {
// Resize window and graphics simultaneously
glfwGetFramebufferSize(window, &width, &height);
glViewport(0, 0, width, height);
// Render here
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use Shader Program exe and select VAO before drawing
glUseProgram(shaderProgram); // Call Shader per-frame when updating attributes
// Declare identity matrix
glm::mat4 viewMatrix(1.0f);
glm::mat4 projectionMatrix(1.0f);
// Initialize transforms
//modelMatrix = glm::scale(modelMatrix, glm::vec3(1.0f, 1.0f, 1.0f));
viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, -3.0f));
viewMatrix = glm::rotate(viewMatrix, 45.0f * toRadians, glm::vec3(1.0f, 0.0f, 0.0f));
projectionMatrix = glm::perspective(45.0f, (GLfloat)width / (GLfloat)height, 0.1f, 100.0f);
// Select uniform shader and variable
GLuint modelLoc = glGetUniformLocation(shaderProgram, "model");
GLuint viewLoc = glGetUniformLocation(shaderProgram, "view");
GLuint projectionLoc = glGetUniformLocation(shaderProgram, "projection");
// Pass transform to Shader
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(viewMatrix));
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projectionMatrix));
glBindVertexArray(VAO); // User-defined VAO must be called before draw
for (GLuint i = 0; i < 4; i++) {
glm::mat4 modelMatrix(1.0f);
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(modelMatrix));
// Draw primitive(s)
draw();
}
// Unbind Shader exe and VOA after drawing per frame
glBindVertexArray(0); // In case different VAO will be used after
glUseProgram(0); // In case different shader will be used after
glBindVertexArray(VAO);
// Swap front and back buffers
glfwSwapBuffers(window);
// Poll for and process events
glfwPollEvents();
}
glfwTerminate();
return 0;
}
The unit of glm::perspective
s filed of view argument is radian, but not degree. You can use glm::radians
to convert from degree to radian:
projectionMatrix = glm::perspective(45.0f, (GLfloat)width / (GLfloat)height, 0.1f, 100.0f);
projectionMatrix = glm::perspective(glm::radians(45.0f), (GLfloat)width / (GLfloat)height, 0.1f, 100.0f);
The unit of cos
and sin
is radians, but not degrees. You must increment the angle for each vertex because you want to calculate the points around the circle:
GLfloat vertices[] = {
0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
cos( 0 * toRadians), sin( 0 * toRadians), 0.0, 0.0, 1.0, 0.0,
cos( 60 * toRadians), sin( 60 * toRadians), 0.0, 0.0, 0.0, 1.0,
cos(120 * toRadians), sin(120 * toRadians), 0.0, 1.0, 0.0, 1.0,
cos(180 * toRadians), sin(180 * toRadians), 0.0, 0.0, 1.0, 0.0,
cos(240 * toRadians), sin(240 * toRadians), 0.0, 0.0, 0.0, 1.0,
cos(300 * toRadians), sin(300 * toRadians), 0.0, 1.0, 0.0, 1.0,
cos(360 * toRadians), sin(360 * toRadians), 0.0, 0.0, 1.0, 0.0
};
Of course you have to draw all the tringles. The number of indices therefore is 18, but not 6:
void draw() {
GLenum mode = GL_TRIANGLES;
GLsizei indices = 18;
glDrawElements(mode, indices, GL_UNSIGNED_BYTE, nullptr);
}