I am trying to build a tensorflow dataset from a generator. I have a list of tuples called some_list , where each tuple has an integer and some text.
When I do not pass some_list as an argument to the generator, the code works fine
import tensorflow as tf
import random
import numpy as np
some_list=[(1,'One'),[2,'Two'],[3,'Three'],[4,'Four'],
(5,'Five'),[6,'Six'],[7,'Seven'],[8,'Eight']]
def text_gen1():
random.shuffle(some_list)
size=len(some_list)
i=0
while True:
yield some_list[i][0],some_list[i][1]
i+=1
if i>size:
i=0
random.shuffle(some_list)
#Not passing any argument
tf_dataset1 = tf.data.Dataset.from_generator(text_gen1,output_types=(tf.int32,tf.string),
output_shapes = ((),()))
for count_batch in tf_dataset1.repeat().batch(3).take(2):
print(count_batch)
(<tf.Tensor: shape=(3,), dtype=int32, numpy=array([7, 1, 2])>, <tf.Tensor: shape=(3,), dtype=string, numpy=array([b'Seven', b'One', b'Two'], dtype=object)>) (<tf.Tensor: shape=(3,), dtype=int32, numpy=array([3, 5, 4])>, <tf.Tensor: shape=(3,), dtype=string, numpy=array([b'Three', b'Five', b'Four'], dtype=object)>)
However, when I try to pass some_list as an argument, the code fails
def text_gen2(file_list):
random.shuffle(file_list)
size=len(file_list)
i=0
while True:
yield file_list[i][0],file_list[i][1]
i+=1
if i>size:
i=0
random.shuffle(file_list)
tf_dataset2 = tf.data.Dataset.from_generator(text_gen2,args=[some_list],output_types=
(tf.int32,tf.string),output_shapes = ((),()))
for count_batch in tf_dataset1.repeat().batch(3).take(2):
print(count_batch)
ValueError: Can't convert Python sequence with mixed types to Tensor.
I noticed , when I try to pass a list of integers as an argument , the code works. However, a list of tuples seems to make it crash. Can someone shed some light on it ?
The problem is what it says is, you cannot have heterogeneous data types (int
and str
) in the same tf.Tensor
. I did a few changes and came up with the code below.
Separate your some_list
to two lists using zip()
, i.e. int_list
and str_list
and make your generator function accept two lists.
I don't understand why you're manually shuffling stuff within the generator. You can do it in a cleaner way using tf.data.Dataset.shuffle()
import tensorflow as tf
import random
import numpy as np
some_list=[(1,'One'),[2,'Two'],[3,'Three'],[4,'Four'],
(5,'Five'),[6,'Six'],[7,'Seven'],[8,'Eight']]
def text_gen2(int_list, str_list):
for x, y in zip(int_list, str_list):
yield x, y
tf_dataset2 = tf.data.Dataset.from_generator(
text_gen2,
args=list(zip(*some_list)),
output_types=(tf.int32,tf.string),output_shapes = ((),())
)
i = 0
for count_batch in tf_dataset2.repeat().batch(4).shuffle(buffer_size=6):
print(count_batch)
i += 1
if i > 10: break;