pythonpandasdatabasenumpymean

Replace NaN with the average of the last 5 values - Pandas


I want to know how can I replace the NaN in my dataset with the last average of 5 last values.

Column A Column B
1 2
2 5
3 5
4 2
5 2
NaN 2
NaN 2
1 2
1 2
1 2
1 NaN
1 2
1 2

For example, in this case the first NaN will be the average of (1,2,3,4,5) and second NaN will be the average of (2,3,4,5, The value of the other NaN).

I have tried

df.fillna(df.mean())

Solution

  • As mentioned, it has been answered here, but the updated version for the latest pandas version is as follow:

    
    data = {
        'col1': [1, 2, 3, 4, 5, np.nan, np.nan, 1, 1, 1, 1, 1, 1],
        'col2': [2, 5, 5, 2, 2, 2, 2, 2, 2, 2, np.nan, 2, 2]
    }
    df = pd.DataFrame(data)
    
    window_size = 5
    df = df.fillna(df.rolling(window_size + 1, min_periods = 1).mean())
    

    outputs:

        col1  col2
    0    1.0   2.0
    1    2.0   5.0
    2    3.0   5.0
    3    4.0   2.0
    4    5.0   2.0
    5    3.0   2.0
    6    3.5   2.0
    7    1.0   2.0
    8    1.0   2.0
    9    1.0   2.0
    10   1.0   2.0
    11   1.0   2.0
    12   1.0   2.0