I am making a Deep Learning model and need to use it in LabView DL module. but it need the input node and output node names how to find them please help me.
i tried to use some code to find the node names but iam not getting them
You can use model.summary() to get all the names of the layers present in the model.For example
model=keras.Sequential([
keras.Input(shape=(28,28,1)),
keras.layers.Conv2D(32,kernel_size=(3,3),activation='relu'),
keras.layers.MaxPooling2D(pool_size=(2,2)),
keras.layers.Conv2D(64,kernel_size=(3,3),activation='relu'),
keras.layers.MaxPooling2D(pool_size=(2,2)),
keras.layers.Flatten(),
keras.layers.Dropout(0.5),
keras.layers.Dense(10,activation='softmax')])
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 26, 26, 32) 320
max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0
)
conv2d_1 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0
2D)
flatten (Flatten) (None, 1600) 0
dropout (Dropout) (None, 1600) 0
dense (Dense) (None, 10) 16010
=================================================================
Total params: 34,826
Trainable params: 34,826
Non-trainable params: 0
__________________________________
The names under the layer column are the names of the layer. Thank You.