it's clearly that float16 can save bandwidth, but is float16 can save compute cycles while computing transcendental functions, like exp()?
If your hardware has full support for it, not just conversion to float32, then yes, definitely. e.g. on a GPU, or on Intel Alder Lake with AVX-512 enabled, or Sapphire Rapids. Half-precision floating-point arithmetic on Intel chips. Or apparently on Apple M2 CPUs.
If you can do two 64-byte SIMD vectors of FMAs per clock on a core, you go twice as fast if that's 32 half-precision FMAs per vector instead of 16 single-precision FMAs.
Without hardware ALU support for FP16, only by not requiring as much precision because you know you're eventually going to round to fp16. So you'd use polynomial approximations of lower degree, thus fewer FMA operations, even though you're computing with float32.
BTW, exp
and log
are interesting for floating point because the format itself is build around an exponential representation. So you can do an exponential by converting fp->int and stuffing that integer into the exponent field of an FP bit pattern. Then with the the fractional part of your FP number, you use a polynomial approximation to get the mantissa of the exponent. A log
implementation is the reverse: extract the exponent field and use a polynomial approximation of log of the mantissa, over a range like 1.0 to 2.0.
See
Very fast approximate Logarithm (natural log) function in C++?
vgetmantps vs andpd instructions for getting the mantissa of float
Normally you do want some FP operations, so I don't think it would be worth trying to use only 16-bit integer operations to avoid unpacking to float32 even for exp or log, which are somewhat special and intimately connected with floating point's significand * 2^exponent
format, unlike sin/cos/tan or other transcendental functions.
So I think your best bet would normally still be to start by converting fp16 to fp32, if you don't have instructions like AVX-512 FP16 can do actual FP math on it. But you can gain performance from not needing as much precision, since implementing these functions normally involves a speed vs. precision tradeoff.