import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
train_images, test_images = train_images / 255, test_images / 255
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print('\nTest accuracy:', test_acc)
probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)
predictions[0]
model.save("image_classifier.model")
model = models.load_model("image_classifier.model")
img = cv.imread("shoes.png")
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
plt.imshow(img, cmap = plt.cm.binary)
prediction = model.predict(np.array(img) / 255)
index = np.argmax(prediction)
print(f"Prediction is {class_names[index]}")
when I tried to run this code with new image I get error all the time. I want the model to make a new prediction with new image but always I get scale error. my error is:
`
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
----> 1 prediction = model.predict(np.array(img) / 255)
2 index = np.argmax(prediction)
3 print(class_names[index])
~/opt/anaconda3/lib/python3.9/site-packages/keras/utils/traceback_utils.py in error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
~/opt/anaconda3/lib/python3.9/site-packages/keras/engine/training.py in tf__predict_function(iterator)
13 try:
14 do_return = True
---> 15 retval_ = ag__.converted_call(ag__.ld(step_function), (ag__.ld(self), ag__.ld(iterator)), None, fscope)
16 except:
17 do_return = False
ValueError: in user code:
File "/Users/.../opt/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1845, in predict_function *
return step_function(self, iterator)
File "/Users/.../opt/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1834, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/Users/.../opt/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1823, in run_step **
outputs = model.predict_step(data)
File "/Users/.../opt/anaconda3/lib/python3.9/site-packages/keras/engine/training.py", line 1791, in predict_step
return self(x, training=False)
File "/Users/.../opt/anaconda3/lib/python3.9/site-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/Users/.../opt/anaconda3/lib/python3.9/site-packages/keras/engine/input_spec.py", line 264, in assert_input_compatibility
raise ValueError(f'Input {input_index} of layer "{layer_name}" is '
` ValueError: Input 0 of layer "sequential" is incompatible with the layer: expected shape=(None, 28, 28), found shape=(None, 28, 3)
It's only failing on the new image you passed in. Here:
img = cv.imread("shoes.png")
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
plt.imshow(img, cmap = plt.cm.binary)
prediction = model.predict(np.array(img) / 255)
Loading that png image returning an image with three channels: shape [height, width, channels]. Your model is expecting inputs with shape [batch, height, width].
You need to convert the image to greyscale and add a batch dimension:
img = np.array(img)/255
img = np.mean(img, axis=-1]
img = img[np.newaxis, ...]
prediction = model.predict(img)