I need help to generate this graph, especially with domains limits
and the arrow indicating the domain
all I can do is generate the domains name but not the limits and arrow
The following code will produce something like what you require:
from matplotlib import pyplot as plt
from matplotlib.patches import Wedge
import numpy as np
labels = ["Obésité\nmassive", "Obésité", "Surpoids", "Normal", "Maigreur"]
innerlabels = [">40", "30 à 40", "25 à 30", "18,5 à 25", "< 18,5"]
colours = ["red", "darkorange", "orange", "green", "blue"]
fig, ax = plt.subplots(figsize=(6, 6), dpi=200)
theta = 0
dtheta = 180 / len(labels)
width = 0.35
def pol2cart(rho, phi):
x = rho * np.cos(phi)
y = rho * np.sin(phi)
return(x, y)
patches = []
for i in range(len(labels)):
# outer wedge
wedge = Wedge(0, r=1, width=width, theta1=theta, theta2=(theta + dtheta), fc=colours[i], alpha=0.6, edgecolor="whitesmoke")
ax.add_patch(wedge)
# inner wedge
wedge = Wedge(0, r=1 - width, width=width, theta1=theta, theta2=(theta + dtheta), fc=colours[i], edgecolor="whitesmoke")
ax.add_patch(wedge)
theta += dtheta
# add text label
tr = 1 - (width / 2)
ta = theta - dtheta / 2
x, y = pol2cart(tr, np.deg2rad(ta))
textangle = -np.fmod(90 - ta, 180)
ax.text(x, y, labels[i], rotation=textangle, va="center", ha="center", color="white", fontweight="bold")
# inner labels
tr = (1 - width) - (width / 2)
x, y = pol2cart(tr, np.deg2rad(ta))
textangle = -np.fmod(90 - ta, 180)
ax.text(x, y, innerlabels[i], rotation=textangle, va="center", ha="center", color="white")
ax.set_xlim([-1, 1])
ax.set_ylim([0, 1])
ax.set_axis_off()
ax.set_aspect("equal")
def bmiposition(bmi):
"""
Get angular position of BMI arrow.
"""
from scipy.interpolate import interp1d
bmiranges = [(0, 18.5), (18.5, 25), (25, 30), (30, 40), (40, 80)]
angrange = [(180 - dtheta * i, 180 - dtheta * (i + 1)) for i in range(len(bmiranges))]
interpfuncs = []
for i in range(len(bmiranges)):
interpfuncs.append(interp1d(bmiranges[i], angrange[i], kind="linear"))
bmiang = np.piecewise(
bmi,
[bmiranges[i][0] < bmi <= bmiranges[i][1] for i in range(len(bmiranges))],
interpfuncs,
)
return bmiang
bmi = 22.5 # set BMI
# add arrow
pos = bmiposition(bmi) # get BMI angle
x, y = pol2cart(0.25, np.deg2rad(pos))
ax.arrow(0, 0, x, y, head_length=0.125, width=0.025, fc="k")
ax.plot(0, 0, 'ko', ms=10) # circle at origin
giving: